

US009225351B2

(12) United States Patent

Itakura et al.

(54) CURRENT AMPLIFIER CIRCUIT, INTEGRATOR, AND AD CONVERTER

(71) Applicant: Kabushiki Kaisha Toshiba, Minato-ku,

Tokyo (JP)

(72) Inventors: Tetsuro Itakura, Tokyo (JP); Masanori

Furuta, Kanagawa (JP); Akihide Sai, Kanagawa (JP); Junya Matsuno, Kanagawa (JP); Yohei Hatakeyama,

Kanagawa (JP)

(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/538,212

(22) Filed: **Nov. 11, 2014**

(65) **Prior Publication Data**

US 2015/0130647 A1 May 14, 2015

(30) Foreign Application Priority Data

Nov. 13, 2013	(JP)	2013-235298
Oct. 22, 2014	(JP)	2014-215707

(51) **Int. Cl.**

 H03M 1/12
 (2006.01)

 H03M 1/00
 (2006.01)

 H03F 3/45
 (2006.01)

(Continued)

(52) U.S. Cl.

(10) Patent No.: US 9,225,351 B2

(45) **Date of Patent:**

Dec. 29, 2015

58) Field of Classification Search

(56) References Cited

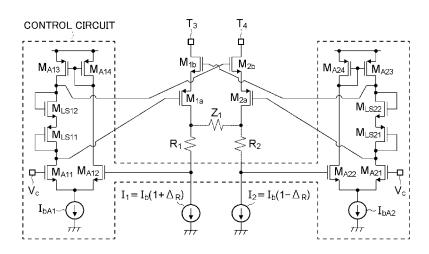
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

JP H06-260850 A 9/1994 JP 2001-085953 A 3/2001

OTHER PUBLICATIONS

B. Razavi, "Principles of Data Conversion System Design," Wiley—IEEE Press, Sec. 6.7 Successive Approximation Architectures, pp. 143-147.


(Continued)

Primary Examiner — Joseph Lauture (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear LLP

(57) ABSTRACT

In one embodiment, a current amplifier circuit includes a first transistor, a first resistor, a second transistor, a second resistor, a first passive element, and a control circuit. The first transistor has a first terminal, a second terminal, and a control terminal. The first resistor has one end connected to the first terminal of the first transistor. The second transistor has a first terminal, and a control terminal. The second resistor has one end connected to the first terminal of the second transistor. The first passive element is connected between the first terminals of the first transistor and the second transistor. The control circuit controls at least one of voltage at the control terminals of the first transistor and the second transistor such that the voltage at the other end of the first resistor becomes equal to the voltage at the other end of the second resistor.

19 Claims, 31 Drawing Sheets

(51) **Int. Cl. H03M 1/06** (2006.01)

H03M 1/36 (2006.01)

(56) References Cited

OTHER PUBLICATIONS

P.E. Allen, et al., "CMOS Analog Circuit Design," The Oxford Series in Electrical and Computer Engineering, pp. 709-710 (*Implementation of Delta-Sigma Modulators*).

Y. M. Lin, et al., "A13-b 2.5-MHz Self-Calibrated Pipelined A/D Converter in 3- µm CMOS," JSSC, vol. 26, No. 4, Apr. 1991. Y. Chiu, et al., "A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR," IEEE Journal of Solid State Circuits, vol. 39, No. 12,

pp. 2139-2151, Dec. 2004. J. Choen, et al., "Noise Analysis and Simulation Method for a Signle-Slope ADC with CDS in a CMOS Image Sensor," pp. 2980-2987, IEEE TCAS-I, vol. 55, No. 10, Nov. 2008.

* cited by examiner

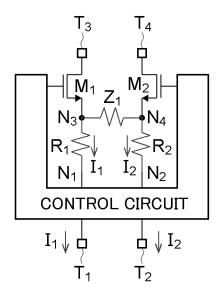


FIG. 1

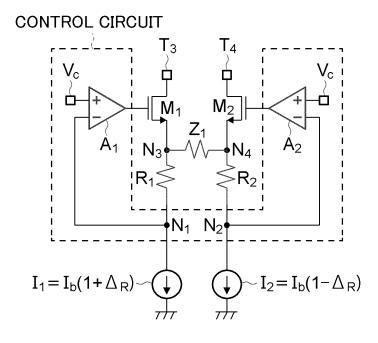


FIG. 2

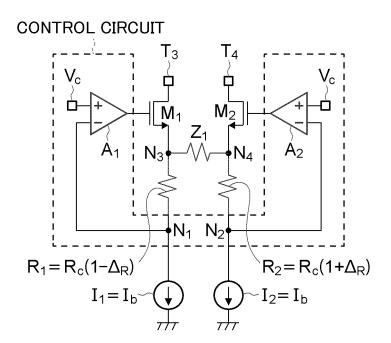


FIG. 3

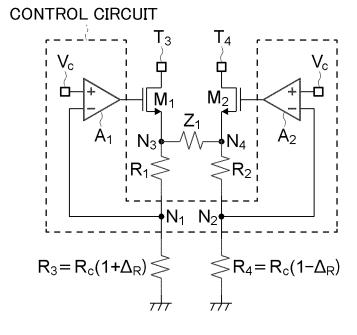


FIG. 4

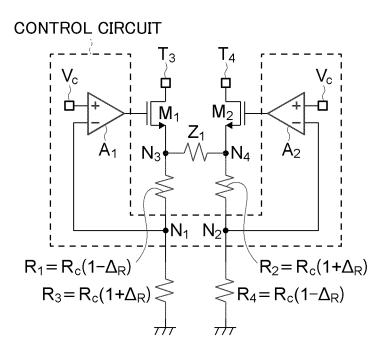
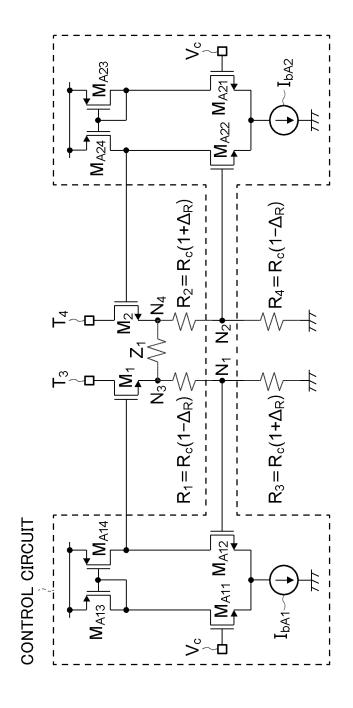



FIG. 5

M G .

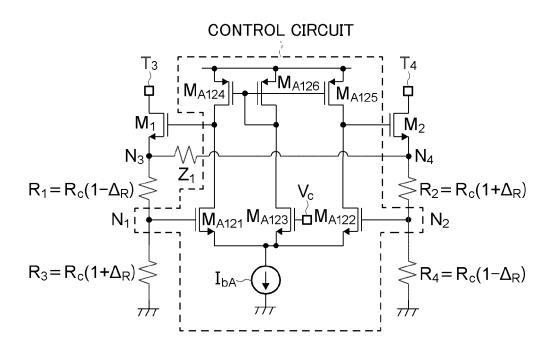


FIG. 7

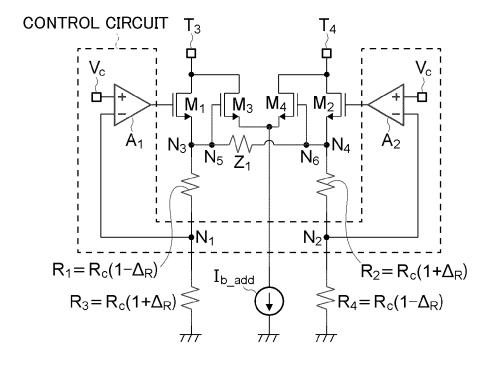
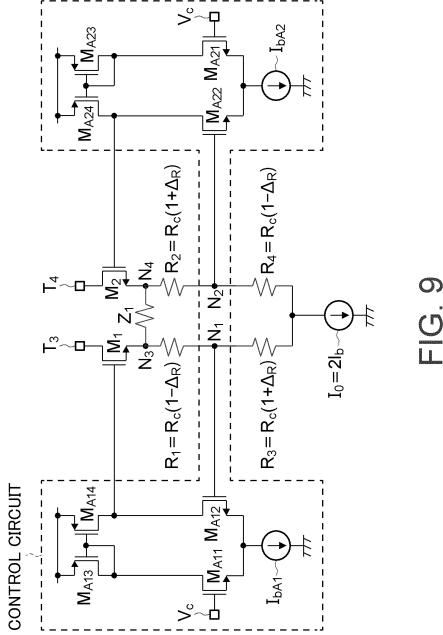



FIG. 8

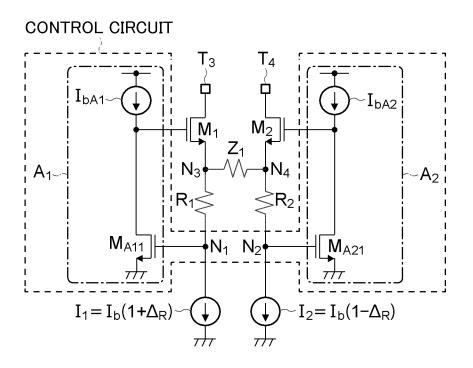


FIG. 10

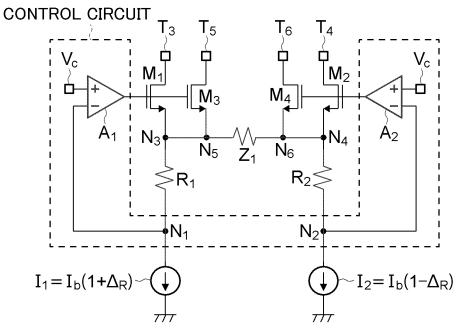


FIG. 11

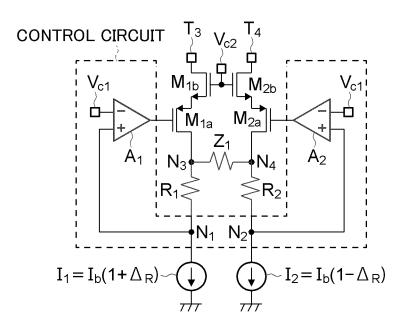


FIG. 12

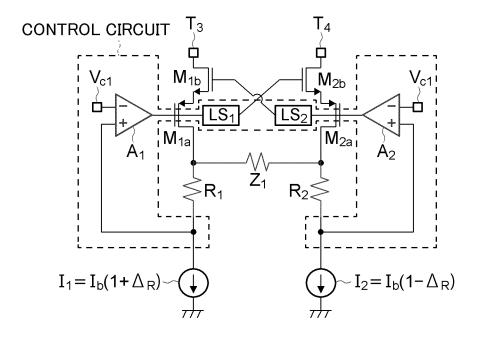
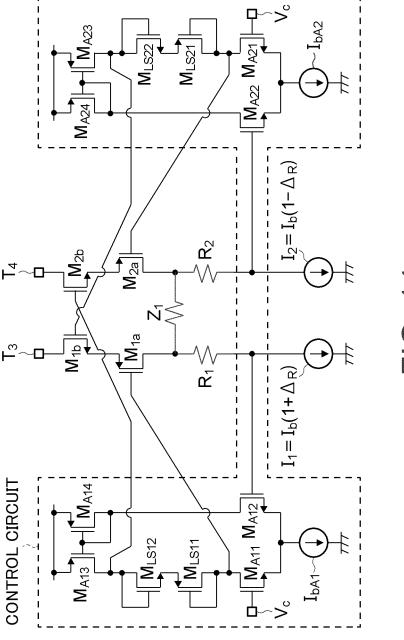



FIG. 13

FG. 14

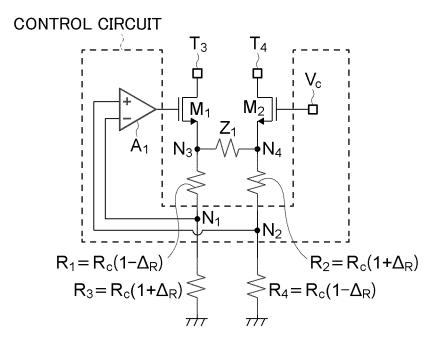


FIG. 15

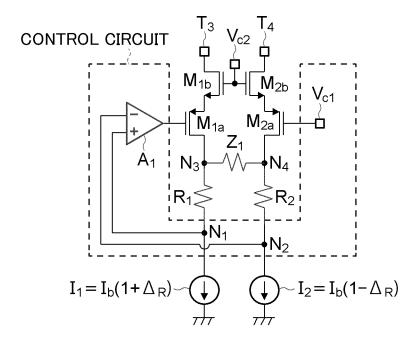
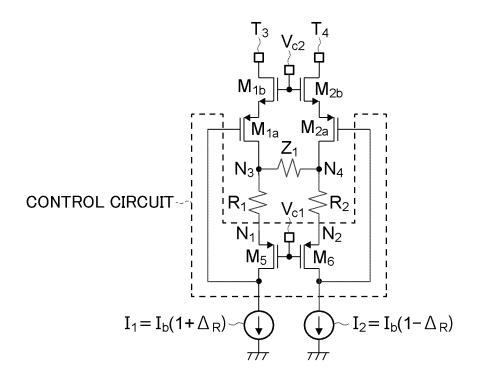



FIG. 16

Cont M_1 M_2 M_4 M_4 M_5 M_4 M_4 M_5 M_4 M_5 M_6 M_8 M_8

FIG. 17

FIG. 18

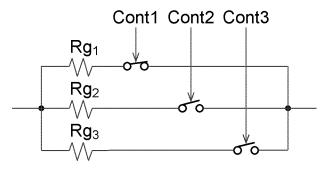


FIG. 19

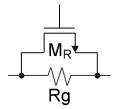


FIG. 20

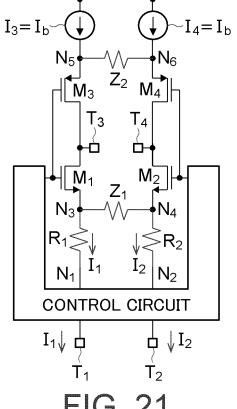


FIG. 21

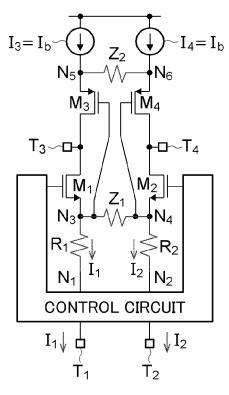


FIG. 22

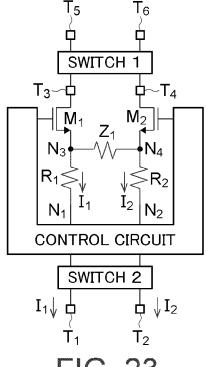


FIG. 23

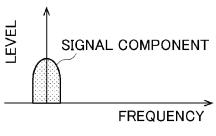


FIG. 24A

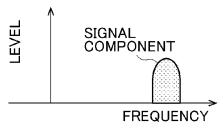


FIG. 24D

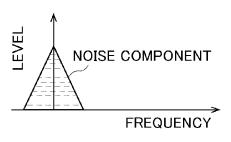


FIG. 24B

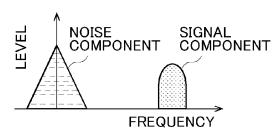


FIG. 24E

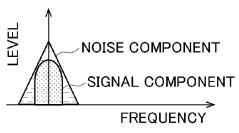


FIG. 24C

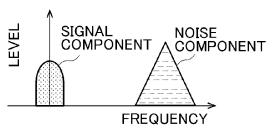
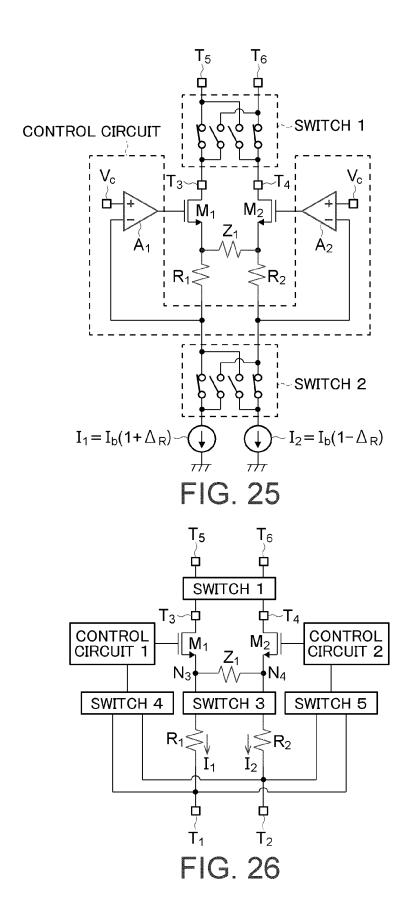



FIG. 24F

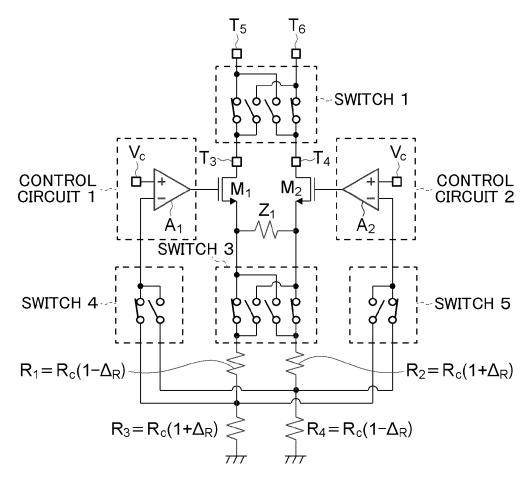


FIG. 27

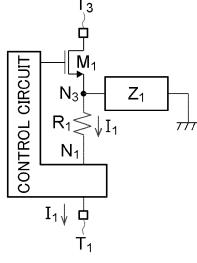


FIG. 28

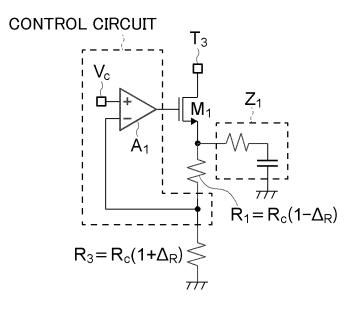


FIG. 29

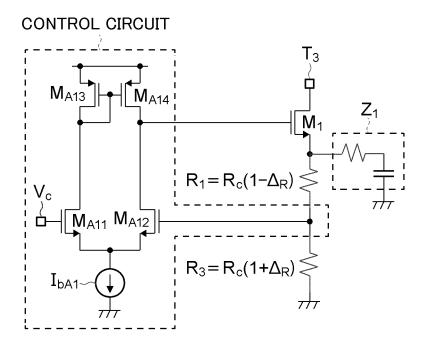


FIG. 30

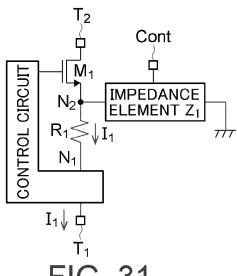
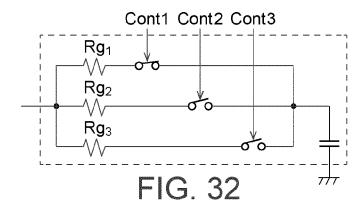



FIG. 31

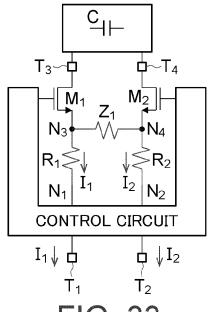


FIG. 33

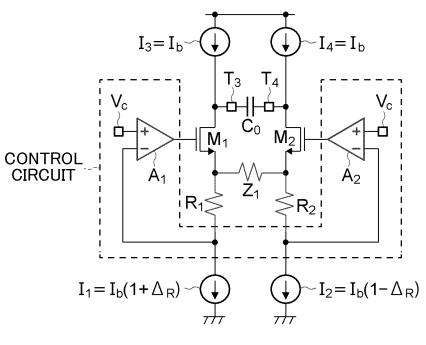


FIG. 34

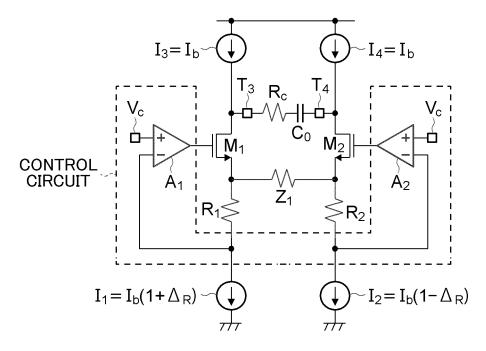
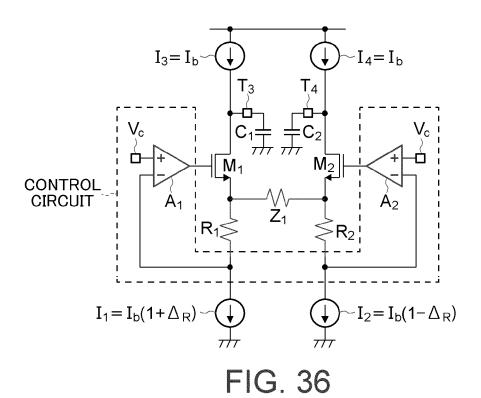



FIG. 35

 $I_{3}=I_{b}$ V_{c} V_{c} V_{c} CIRCUIT $I_{1}=I_{b}(1+\Delta_{R})$ $I_{1}=I_{b}(1+\Delta_{R})$ $I_{2}=I_{b}(1-\Delta_{R})$

FIG. 37

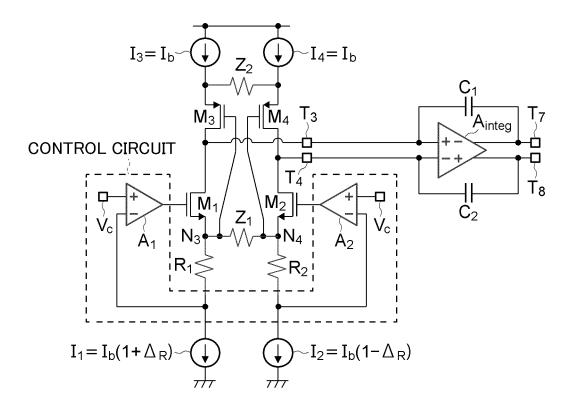


FIG. 38

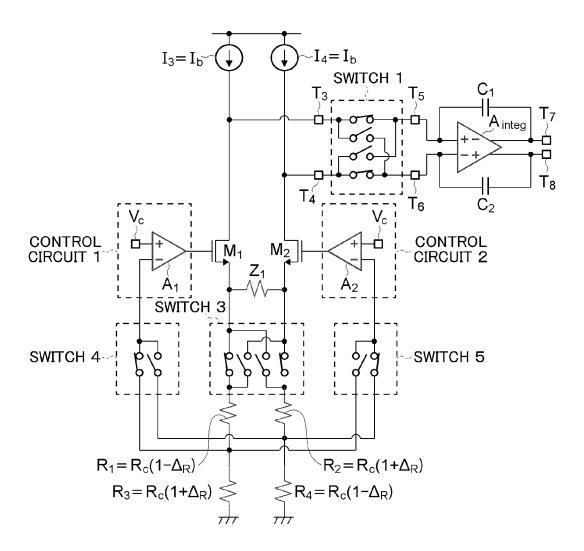
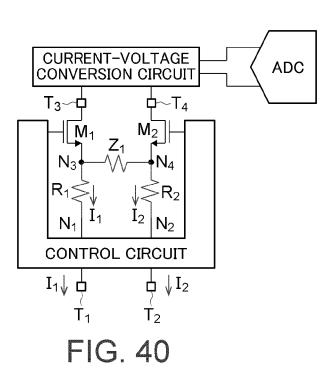
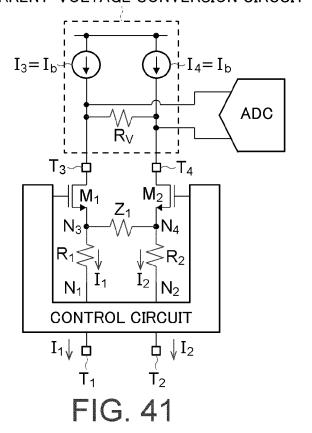




FIG. 39

CURRENT-VOLTAGE CONVERSION CIRCUIT

CURRENT-VOLTAGE CONVERSION CIRCUIT

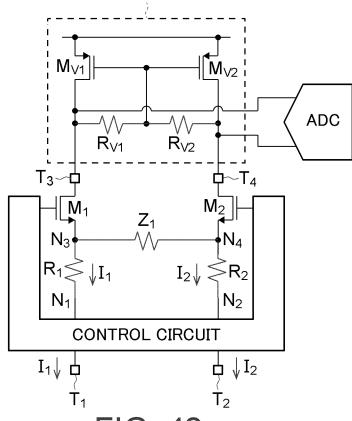


FIG. 42



FIG. 44

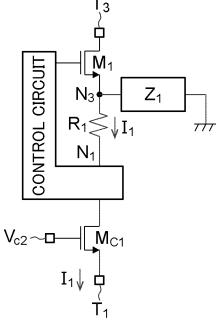


FIG. 45

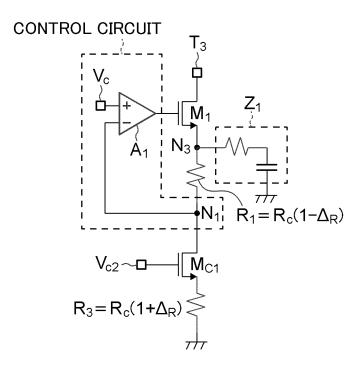
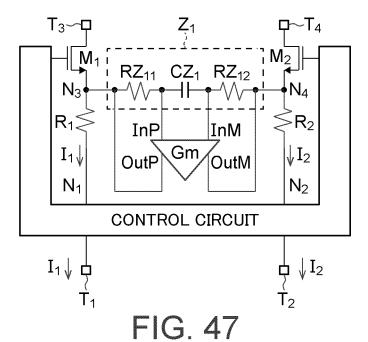



FIG. 46

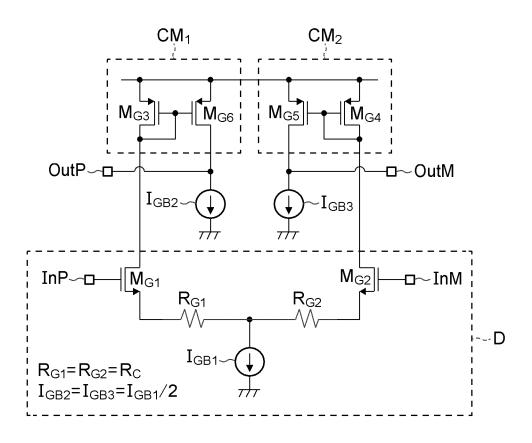


FIG. 48

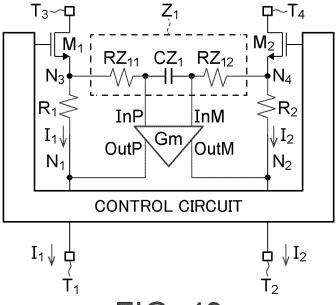


FIG. 49

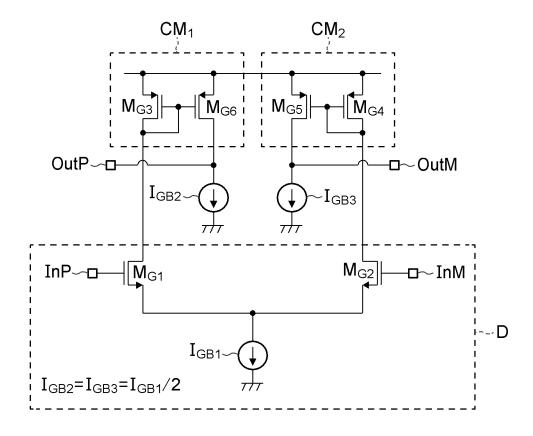


FIG. 50

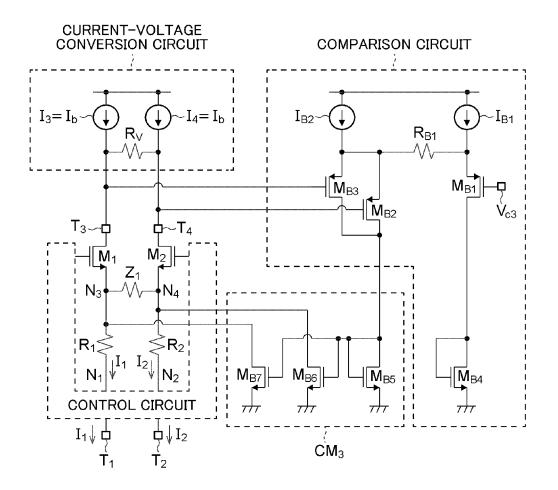


FIG. 51

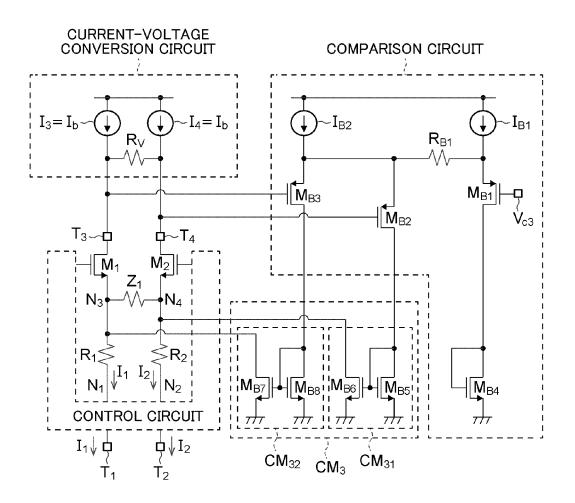


FIG. 52

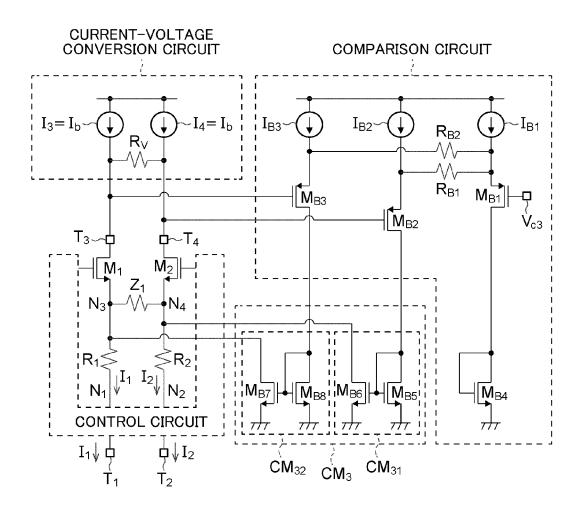


FIG. 53

20

1

CURRENT AMPLIFIER CIRCUIT, INTEGRATOR, AND AD CONVERTER

CROSS REFERENCE TO RELATED APPLICATION(S)

This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2013-235298, filed on Nov. 13, 2013, and prior Japanese Patent Application No. 2014-215707, filed on Oct. 22, 2014, the entire contents all of which are incorporated herein by reference.

FIELD

Embodiments described herein relate generally to a current amplifier circuit, integrator, and AD converter.

BACKGROUND

In the related art, there are cases in which a sensor that detects a state of an object by changing a resistance value has a small change rate of the resistance value, such as one percent, corresponding to a state change. In the case of using 25 such a sensor, a change of resistance value is converted to an electrical signal and then the electrical signal is amplified by an amplifier circuit. In the case where the change of the resistance value is converted to current, a current amplifier circuit is used. However, the current amplifier circuit in the 30 related art, there is a problem in which most of bias current is consumed.

For example, it is known that a current mirror circuit is used as the current amplifier circuit in the related art. In the case of using this kind of current amplifier circuit, the change of the resistance value is converted to the current at first. Provided that the change rate of the resistance value is Δ_R and the bias current is I_b , the converted current becomes: I_b (1+ Δ_R). In other words, the change of the resistance value is converted to the current in which signal current $I_b\Delta_R$ is superimposed on the bias current I_b .

The converted current is received in the current mirror circuit and amplified by a multiple of a device size ratio. Here, when the device size ratio is K, the current amplified by the 45 current mirror circuit is $KI_b(1+\Delta_R)$. In this case, a ratio between the bias current consumed in an entire circuit and signal current to be output (hereinafter referred to as "ratio between the bias current and the signal current") is: $KI_b\Delta_R$ / $(I_b + KI_b) = K\Delta_R/(1+K)$. Since normally K is a value of one or 50 larger, the ratio between the bias current and the signal current $K\Delta_R/(1+K)$ becomes Δ_R or less. Thus, the signal current becomes K-fold, but the bias current is also increased, thereby not improving the ratio between the bias current and the

As a method of improving the above situation, there is a proposed method in which the ratio between the bias current and the signal current is improved by subtracting predetermined current I_{b1} from the converted current $I_b(1+\Delta_R)$ before being received in the current mirror circuit. According to such 60 a current amplifier circuit, output of the current mirror circuit becomes: K (I_b – I_{b1} + $I_b\Delta_R$). Therefore, the ratio between the bias current and the signal current becomes: $KI_b\Delta_R/\{I_b+K\}$ (I_b-I_{b1}) .

For example, in the case where $I_b=200 \,\mu\text{A}, \Delta_R=0.01 \,(=1\%)$, 65 I_{b1} =197.8 μ A, and K=80, total bias current becomes $376 \mu A (=200 \mu A + 80 \times (200 \mu A - 197.8 \mu A))$, and the signal

2

current becomes $160 \,\mu\text{A}$ (= $80 \times 200 \,\mu\text{A} \times 0.01$). Therefore, the ratio between the bias current and the signal current is: 160/ 376 = 0.43.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a current amplifier circuit according to a first embodiment;

FIGS. 2 to 17 are diagrams illustrating respective working examples according to the first embodiment;

FIG. 18 is a diagram of a current amplifier circuit according to a second embodiment;

FIG. 19 is a diagram illustrating an example of a passive element in FIG. 18;

FIG. 20 is a diagram illustrating another example of the passive element in FIG. 18;

FIG. 21 is a diagram illustrating a current amplifier circuit according to a third embodiment;

FIG. 22 is a diagram illustrating a current amplifier circuit according to a fourth embodiment;

FIG. 23 is a diagram of a current amplifier circuit according to a fifth embodiment;

FIGS. 24A to 24F are explanatory diagrams illustrating signal changes caused by operation of a switching circuit;

FIG. 25 is a diagram illustrating a first working example according to the fifth embodiment;

FIG. 26 is a diagram of a current amplifier circuit according to a sixth embodiment;

FIG. 27 is a diagram illustrating a first working example according to the sixth embodiment;

FIG. 28 is a diagram of a current amplifier circuit according to a seventh embodiment;

FIG. 29 is a diagram illustrating a first working example according to the seventh embodiment;

FIG. 30 is a diagram illustrating a second working example according to the seventh embodiment;

FIG. 31 is a diagram of a current amplifier circuit according to an eighth embodiment;

FIG. 32 is a diagram illustrating an example of a passive element in FIG. 31;

FIG. 33 is a diagram illustrating an integrator according to a ninth embodiment;

FIGS. 34 to 39 are diagrams illustrating respective working examples according to the ninth embodiment;

FIG. 40 is a diagram illustrating an AD converter according to a tenth embodiment;

FIG. 41 is a diagram illustrating a first working example according to the tenth embodiment;

FIG. 42 is a diagram illustrating a second working example according to the tenth embodiment;

FIG. 43 is a diagram of a current amplifier circuit according to an eleventh embodiment;

FIG. 44 is a diagram illustrating respective working 55 example according to the eleventh embodiment;

FIG. 45 is a diagram of a current amplifier circuit according to a twelfth embodiment;

FIG. 46 is a diagram illustrating respective working example according to the twelfth embodiment;

FIG. 47 is a diagram of a current amplifier circuit according to a thirteenth embodiment;

FIG. 48 is a diagram illustrating an example of a voltagecurrent conversion circuit in FIG. 47;

FIG. 49 is a diagram of a current amplifier circuit according to a fourteenth embodiment;

FIG. 50 is a diagram illustrating an example of a voltagecurrent conversion circuit in FIG. 49;

3

FIG. **51** is a diagram of a current amplifier circuit according to a fifteenth embodiment; and

FIGS. **52** and **53** are diagrams illustrating another example of the current amplifier circuit in FIG. **51**.

DETAILED DESCRIPTION

Embodiments will now be explained with reference to the accompanying drawings. The present invention is not limited to the embodiments.

In one embodiment, a current amplifier circuit includes a first transistor, a first resistor, a second transistor, a second resistor, a first passive element, and a control circuit. The first transistor has a first terminal, a second terminal, and a control terminal. The first resistor has one end connected to the first terminal of the first transistor. The second transistor has a first terminal, a second terminal, and a control terminal. The second resistor has one end connected to the first terminal of the second transistor. The first passive element is connected between the first terminal of the first transistor and the first terminal of the second transistor. The control circuit controls at least one of voltage at the control terminal of the second transistor and voltage at the control terminal of the second transistor such that the voltage at the other end of the first resistor becomes equal to the voltage at the other end of the 25 second resistor.

The current amplifier circuit amplifies a differential signal received from input terminals T_1 (first input terminal) and T_2 (second input terminal), and executes output from output terminals T_3 and T_3 . In the following, a current amplifier 30 circuit formed of a MOS transistor will be described, but the current amplifier circuit can be also formed of a bipolar transistor. The current amplifier circuit can be formed of the bipolar transistor by substituting the MOS transistor described below with the bipolar transistor and further substituting a source terminal with an emitter terminal, a drain terminal with a collector terminal, and a gate terminal with a base terminal.

Further, in the following, an embodiment mainly using an N-channel MOS transistor will be described, but it is also 40 possible to configure a current amplifier circuit mainly using a P-channel MOS transistor or a PNP type bipolar transistor. The current amplifier circuit mainly using the P-channel MOS transistor or the PNP type bipolar transistor can be formed by substituting the N-channel (P-channel) MOS transistor described below with the P-channel (N-channel) MOS transistor or with the PNP type (NPN type) bipolar transistor, and connecting a terminal connected to a ground (power source) to the power source (ground).

In the following, a current amplifier circuit according to a first embodiment will be described with reference to FIGS. 1 to 17. Here, FIG. 1 is a diagram illustrating the current amplifier circuit according to the first embodiment. As illustrated in FIG. 1, the current amplifier circuit according to the present $\,^{55}$ embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 , and a control circuit.

The transistor M_1 (first transistor) is an N-channel MOS transistor (hereinafter referred to as "NMOS transistor"). The 60 transistor M_1 has a source terminal (first terminal) connected to the resistor R_1 and the passive element Z_1 at a node N_3 , a drain terminal (second terminal) connected to an output terminal T_3 , and a gate terminal (control terminal) connected to the control circuit. The voltage at the gate terminal of the 65 transistor M_1 is controlled by the control circuit, and drain current I_{M_1} flows in the transistor M_1 .

4

One end of the resistor R_1 (first resistor) is connected to the source terminal of the transistor M_1 and the passive element Z_1 at the node N_3 , and the other end is connected to the control circuit at a node N_1 . The resistor R_1 may be a fixed resistor having a constant resistance value, or may also be a sensor device that detects a state of an object by change of the resistance value.

The transistor M_2 (second transistor) is an NMOS transistor. The transistor M_2 has a source terminal (first terminal) connected to the resistor R_2 and the passive element Z_1 at a node N_4 , a drain terminal (second terminal) connected to an output terminal T_4 , and a gate terminal (control terminal) connected to the control circuit. The voltage at the gate terminal of the transistor M_2 is controlled by the control circuit, and drain current I_{M2} flows in the transistor M_2 .

One end of the resistor R_2 (second resistor) is connected to a source terminal of the transistor M_2 and the passive element Z_1 at the node N_4 , and the other end is connected to the control circuit at a node N_2 . The resistor R_2 may be a fixed resistor having a constant resistance value, or may also be a sensor device that detects a state of an object by change of the resistance value. Meanwhile, in the case where the resistor R_1 has the fixed resistor, preferably the resistor R_2 has the fixed resistor having a resistance value equal to the resistance value of the resistor R_1 (R_1 = R_2). Additionally, in the case where the resistor R_1 is the sensor device, preferably the resistor R_2 is the sensor device having a same absolute value with an opposite sign of a change rate of the resistance value of the resistor R_1 as next: (R_1 = R_C (1- Δ_R), and R_2 = R_C (1+ Δ_R)).

The passive element Z_1 (first passive element) is connected to the source terminal of the transistor M_1 and one end of the resistor R_1 at the node N_3 , and further connected to the source terminal of the transistor M_2 and one end of the resistor R_2 at the node N_4 . The passive element Z_1 may be formed of resistor or capacitor. For example, the passive element Z_1 may be formed of resistor and capacitor connected in series. In this case, when a frequency of an input signal is low, impedance element Z_1 of the passive element Z_1 is substantially determined by a capacitance component, and when the frequency is high, the impedance element Z_1 is substantially determined by a resistance component. Thus, the impedance element Z_1 may include frequency characteristic.

The control circuit is connected to the gate terminal of the transistor M_1 , the gate terminal of the transistor M_2 , the other end of the resistor R_1 , the other end of the resistor R_2 , and the input terminals T_1 and T_2 . The control circuit controls at least one of the voltage at the gate terminal of the transistor M_1 and the voltage at the gate terminal of the transistor M_2 such that voltage V_1 (first predetermined voltage) at the other end of the resistor R_1 becomes equal to voltage V_2 (second predetermined voltage) at the other end of the resistor R_2 , more specifically, the voltage V_1 at the node N_1 becomes equal to the voltage V_2 at the node N_2 . Further, the control circuit executes control such that current I_1 received from the input terminal I_1 is applied to the resistor I_2 and current I_2 received from input terminal I_2 is applied to the resistor I_2 .

Next, operation of the current amplifier circuit according to the present embodiment will be described. In the following description, note that the resistor R_1 and the resistor R_2 are the fixed resistor: $R_1 = R_2 = R_C$, and the passive element Z_1 is resistor. Further, the voltage V_1 and voltage V_2 at the nodes N_1 and N_2 are controlled to be V_C by the control circuit ($V_1 = V_2 = V_C$). Additionally, the current I_1 and the current I_2 are differential signals which are: $I_1 = I_b(1 + \Delta_R)$, and $I_2 = I_b(1 - \Delta_R)$. In other words, a description will be given for a case in which the

5

current amplifier circuit is connected to the sensor device, and signal current is differentially received from the terminals T_1 and T_2 .

When the current I_1 and current I_2 are received from the input terminals T_1 and T_2 , voltage V_3 at the node N_3 and voltage V_4 at the node N_4 become: $V_3 = V_1 + R_1I_1$ and $V_4 = V_2 + R_2I_2$. Here, in the case of plugging following values $(R_1 = R_2 = R_C, I_1 = I_b(1 + \Delta_R), I_2 = I_b(1 - \Delta_R),$ and $V_1 = V_2 = V_C)$ into the mentioned formula, the voltage V_3 and V_4 become: $V_3 = V_C + R_CI_b + R_CI_b\Delta_R$ and $V_4 = V_C + R_CI_b - R_CI_b\Delta_R$.

Here, note that bias current I_B flowing in the entire circuit is $_{20}$ a sum of bias current contained in the output signals (current I_{M1} and I_{M2}), and therefore the bias current I_B becomes: $I_B = 2I_b$. This is equal to a sum of the bias current contained in the input signals (current I_1 and I_2). In other words, according to the present embodiment, the bias current contained in the 25 input signal is not amplified.

On the other hand, signal current I_{SIG} output from the current amplifier circuit is a difference between the two output signals (current I_{M3} and I_{M4}), and therefore the signal current becomes: $I_{SIG} = I_{M1} - I_{M2} = 2\Delta_R I_b + 4R_C I_b \Delta_R / Z_1$.

For example, in the case of R_C =4 k Ω , Δ_R =0.01, I_b =100 μ A, and Z_1 =100 Ω , the signal current contained in the input signal becomes: I_1 - I_2 =2 $I_b\Delta_R$ =2 μ A. The signal current I_{SIG} contained in the output signal becomes: I_{SIG} =162 μ A. In other words, the signal current is amplified 81-fold. Further, the bias current I_B consumed in the current amplifier circuit becomes: I_B =200 μ A, and the ratio between the bias current and the signal current becomes 0.81. Thus, the ratio between the bias current and the signal current in the current amplifier circuit according to the present embodiment becomes larger than the ratio between the bias current in the current amplifier circuit according to the related art.

As described above, in the current amplifier circuit according to the present embodiment, the voltage (V_3-V_4) corresponding to the signal current contained in the input signal is applied to the passive element Z_1 , thereby allowing the current I_{Z_1} corresponding to the signal current to flow in the passive element Z_1 . The signal current is amplified and amplification of the bias current can be suppressed by adding the 50 current I_{Z_1} to the input signals (I_1, I_2) and generating the output signals. In this manner, the ratio between the bias current and the signal current can be improved and power consumption in the current amplifier circuit can be suppressed, compared to the current amplifier circuit in the 55 related art.

Meanwhile, in the current amplifier circuit, only the bias current may be received from one of the input terminals T_1 and T_2 . For example, the input signals may be: $I_1=I_b(1+\Delta_R)$ and $I_2=I_b$. In this case, the signal current to be received is: 60 $I_1-I_2=I_b\Delta_R=1$ μ A. The signal current to be output is: $I_{SIG}=\Delta_RI_b)+2R_CI_b\Delta_R/Z_1=81$ μ A. In other words, an amplification factor of the signal current is same as the case where both input signals contain the signal current. In this case, the bias current in the entire current amplifier circuit is: 65 $I_B=2I_b=200$ μ A. Therefore, the ratio between the bias current and the signal current becomes 0.405.

6

(First Working Example)

FIG. 2 is a diagram illustrating a first working example according to the present embodiment. In the present working example, the current amplifier circuit includes an amplifier circuit A_1 and an amplifier circuit A_2 as the control circuits. The amplifier circuit A_1 (A_2) has a positive input terminal from which predetermined voltage V_C is applied, and a negative input terminal connected to the other end of the resistor R_1 (R_2) at the node N_1 (N_2), and an output terminal connected to the gate terminal of the transistor M_1 (M_2). Further, the input signals I_1 and I_2 are received from current sources I_1 and I_2 . Note that, in the following, the input terminals T_1 and T_2 correspond to the nodes N_1 and N_2 unless otherwise specified.

Now, operation of the control circuit according to the present working example will be described. The amplifier circuit A₁ forms a feedback circuit together with the transistor M_1 and the resistor R_1 , and executes feedback control such that voltage at the positive terminal and negative terminal in the amplifier circuit A_1 become equal. More specifically, the amplifier circuit A₁ controls the voltage at the gate terminal of the transistor M₁ such that the voltage at the negative input terminal (voltage V_1 at the node N_1) becomes equal to predetermined voltage V_{C} . In the same manner, the amplifier circuit A₂ forms the feedback circuit together with the transistor M₂ and the resistor R_2 , and executes the feedback control such that voltage at the positive terminal and negative terminal in the amplifier circuit A_2 become equal. More specifically, the amplifier circuit A2 controls the voltage at the gate terminal of the transistor M₂ such that the voltage at the negative input terminal (voltage V₂ at the node N₂) becomes equal to predetermined voltage V_C . With this configuration, the voltage V_1 and V_2 at the nodes N_1 and N_2 are controlled to be equal to the voltage V_C applied to the positive input terminals in the respective amplifier circuits A_1 and A_2 .

Meanwhile, the current consumed in the operation of the amplifier circuits \mathbf{A}_1 and \mathbf{A}_2 is smaller than the bias current received in the current amplifier circuit. Therefore, in the current amplifier circuit according to the present working example, the ratio between the bias current and the signal current can be improved, compared to the current amplifier circuit in the related art.

(Second Working Example)

FIG. 3 is a diagram illustrating a second working example according to the present embodiment. According to the present working example, the resistors R_1 and R_2 are the sensor devices that change the resistance values in the opposite sides, centering a predetermined resistance value R_C (R_1 = R_C (1- Δ_R), and R_2 = R_C (1+ Δ_R)). Further, the control circuit is connected to the current sources I_1 and I_2 at the nodes I_1 and I_2 and receives the bias current (I_1 = I_b and I_2 = I_b). The configurations of other components are same as the first working example. In other words, according to the present working example, the sensor devices are disposed inside the current amplifier circuit and the input signals are generated inside the current amplifier circuit.

According to the present working example, when the current I_1 and current I_2 flow in the resistor R_1 and R_2 , the voltage at the node N_3 becomes: $V_3 = V_C + I_b R_C (1 - \Delta_R)$. The voltage at the node N_4 becomes: $V_4 = V_C + I_b R_C (1 + \Delta_R)$. Therefore, the current I_{Z1} flowing in the passive element Z_1 becomes: $I_{Z1} = -2I_b R_C \Delta_R/Z_1$. Due to this, the current I_{M1} flowing in the transistor M_1 becomes: $I_{M1} = I_b - 2R_C I_b \Delta_R/Z_1$. The current I_{M2} flowing in the transistor M_2 becomes: $I_{M2} = I_b + 2R_C I_b \Delta_R/Z_1$.

With this configuration, the bias current I_B in the entire current amplifier circuit becomes: I_B =2 I_b . And, the signal current I_{SIG} to be output becomes: I_{SIG} =4 $I_bR_c\Delta_R/Z_1$. In other words, according to the present working example, the signal

current can be amplified without amplifying the bias current in the current amplifier circuit as described above. Therefore, the ratio between the bias current and the signal current can be improved, compared to the current amplifier circuit in the related art.

Meanwhile, either the resistor R_1 or R_2 may be the fixed resistor having the resistance value R_C . In this case, the signal current is generated at only one of the resistors R_1 and R_2 , and the bias current I_B becomes: $I_B=2I_b$. And, the signal current I_{SIG} becomes: $I_{SIG}=-2I_bR_C\Delta_R/Z_1$. (Third Working Example)

FIG. 4 is a diagram illustrating a third working example according to the present embodiment. The present working example is a modified example of the first working example, and the current amplifier circuit includes resistors R_3 and R_4 instead of the current sources I_1 and I_2 of the first embodiment. The resistor R_3 and R_4 are the sensor devices that change the resistance values in the opposite direction, centering the predetermined resistance value R_C ($R_3=R_C(1+\Delta_R)$), and the resistor R_3 and R_4 are respectively connected at the node N_1 and N_2 respectively. According to the present working example, the current I_1 and I_2 generated at the resistor R_3 and R_4 are to be the input signals.

According to the present working example, the voltage at 25 the nodes N₁ and N₂ is controlled at the predetermined voltage V_C , and therefore the current I_1 flowing in the resistor R_3 is: $I_1 = V_C / \{R_C (1 + \Delta_R)\}$, and the current I_2 flowing in the resistor R_4 is $I_2 = V_C / \{R_C (1 - \Delta_R)\}$. In the case of $1 >> \Delta_R$, the current I_1 and I_2 can be approximated as follows: $I_1 \le V_C / R_C - V_C \Delta_R / I_1 \le V_C / R_C - V_C \Delta_R / I_2 \le V_C / R_C - V_C / R_C$ R_C , $I_2 \approx V_C / R_C + V_C \Delta_R / R_C$. More specifically, the current amplifier circuit according to the present working example differentially receives, from the nodes N₁ and N₂, the input signal on which the signal current $(V_C \Delta_R / R_C)$ is superimposed on the bias current (V_C/R_C) . Therefore, the current amplifier circuit according to the present working example operates in the same manner as the first working example, and the ratio between the bias current and the signal current can be improved, compared to the current amplifier circuit in the 40 related art.

(Fourth Working Example)

FIG. **5** is a diagram illustrating a fourth working example according to the present embodiment. The current amplifier circuit according to the present working example is formed by 45 combining the current amplifier circuit of the second working example with that of the third working example, and all of the resistors R_1 to R_4 are sensor devices. The resistor R_1 has opposite polarity of resistance value change with respect to the resistor R_2 , and the resistor R_3 has the opposite polarity of 50 the resistance value change with respect to the resistor R_4 . More specifically, the resistors are: $R_1 = R_4 = R_C(1 - \Delta_R)$, and $R_2 = R_3 = R_C(1 + \Delta_R)$.

In this case, as described in the third working example, the input signal is: $I_1 \approx V_C/R_C - V_C\Delta_R/R_C$, and $I_2 \approx V_C/R_C + V_C\Delta_R/55$ R_C . Therefore, the voltage V_3 at the node N_3 can be approximated as next: $V_3 \approx V_C + I_1 R_1 = 2V_C - 2V_C\Delta_R + V_C(\Delta_R)^2 \approx 2V_C - 2V_C\Delta_R$. Further, the voltage V_4 at the node N_4 can be approximated as next: $V_4 \approx V_C + I_2 R_2 = 2V_C + 2V_C\Delta_R + V_C(\Delta_R)^2 \approx 2V_C + 2V_C\Delta_R$. Therefore, the current I_{Z1} flowing in 60 the passive element Z_1 becomes: $I_{Z1} \approx 4V_C\Delta_R/Z_1$. Here, provided that the bias current $I_b = V_C/R_C$ and the signal current contained in the input signal is $I_1 - I_2 = 2V_C\Delta_R/R_C$, the bias current and the signal current become as next: $I_B = 2I_b$, and $I_{SIG} = 2V_C\Delta_R/R_C + 8V_C\Delta_R/Z_1$. In other words, according to the 65 present working example, the signal current is further amplified and amplification of the bias current is suppressed.

8

Therefore, the ratio between the bias current and the signal current can be improved, compared to the current amplifier circuit in the related art.

(Fifth Working Example)

FIG. 6 is a diagram illustrating a fifth working example according to the present embodiment. The present working example is a concrete example of the fourth working example, in which each of the amplifier circuits A_1 and A_2 according to the fourth working example are formed of an amplifier circuit including a plurality of transistors.

The amplifier circuit A_1 (A_2) includes a transistor M_{A11} (M_{A21}), a transistor M_{A12} (M_{A22}), a transistor M_{A13} (M_{A23}), a transistor M_{A14} (M_{A24}), and a current source I_{bA1} (I_{bA2}). The transistors M_{A11} , M_{A12} , M_{A21} , and M_{A22} are NMOS transistors, and the transistors M_{A13} , M_{A14} , M_{A23} , and M_{A24} are PMOS transistors.

The transistor M_{A11} (M_{A21}) has a gate terminal from which the predetermined bias voltage V_C is received, and a source terminal connected to the current source I_{bA1} (I_{bA2}). The transistor M_{A12} (M_{A22}) has a gate terminal connected to the node N_1 (N_2), and a source terminal connected to the current source I_{bA1} (I_{bA2}). The transistor M_{A13} (M_{A23}) and the transistor M_{A14} (M_{A24}) form the current mirror circuit, and the transistor M_{A14} (M_{A24}) has a drain terminal connected the gate terminal of the transistor M_1 (M_2).

With this configuration, when the voltage V_1 (V_2) at the node N_1 (N_2) becomes higher than the bias voltage V_C , the drain current at the transistor M_{A11} (M_{A21}) is decreased and the drain current is copied at the current mirror circuit. Then, the output of the amplifier circuit A_1 (A_2) is decreased, i.e., the voltage at the gate terminal of the transistor M_1 (M_2) is decreased and the voltage V_1 (V_2) is decreased. In the same manner, when the voltage V_1 (V_2) at the node N_1 (N_2) becomes lower than the bias voltage $\mathbf{V}_{\mathcal{C}}$, the drain current at the transistor M_{A11} (M_{A21}) is increased and the drain current is copied at the current mirror circuit. Then, the output of the amplifier circuit A_1 (A_2) is increased, i.e., the voltage at the gate terminal of the transistor M_1 (M_2) is increased and the voltage $V_1(V_2)$ is increased. Therefore, the voltage at the gate terminal of the transistor M_1 (M_2) is controlled by the amplifier circuit $A_{1}\left(A_{2}\right)$ such that the voltage $V_{1}\left(V_{2}\right)$ at the node N_{1} (N_2) becomes equal to the bias voltage V_C . (Sixth Working Example)

FIG. 7 is a diagram illustrating a sixth working example according to the present embodiment. The present working example is a modified example of the fifth working example, in which the amplifier circuits A_1 and A_2 of the fifth working example are formed of a single amplifier circuit. In other words, according to the present working example, the control circuit is formed of the single amplifier circuit.

The control circuit includes transistors M_{A121} , M_{A122} , and M_{A123} each having a source terminal connected to the current source I_{b4} , and transistors M_{A124} , M_{A125} , and M_{A126} forming the current mirror circuit. The transistors M_{A121} , M_{A122} , and M_{A123} are NMOS transistors, and the transistors M_{A124} , M_{A125} , and M_{A126} are PMOS transistors.

The transistor M_{A123} has a gate terminal from which the bias voltage V_C is applied. The transistor M_{A121} has a gate terminal connected to the node N_1 , and the transistor M_{A122} has a gate terminal connected to the node N_2 . Further, transistor M_{A121} has a drain terminal connected to the gate terminal of the transistor M_1 , and the transistor M_{A122} has a drain terminal connected to the gate terminal connected to the gate terminal of the transistor M_2 .

The operation of the amplifier circuit A_1 according to the fifth working example is implemented by the amplifier circuit including the transistors M_{A121} , M_{A123} , M_{A124} , and M_{A126} , and the operation of the amplifier circuit A_2 is implemented

by the amplifier circuit including the transistors M_{A122} , M_{A123} , M_{A125} , and M_{A126} . In the control circuit according to the present working example, noise generated from the transistors M_{A123} , M_{A126} , and the current source I_{bA} is superimposed on a common-mode output signal and is not superimposed on a differential output signal. Therefore, the current amplifier circuit having low noise can be achieved. Additionally, since the control circuit is configured of one single amplifier circuit, thereby achieving to reduce the current consumed at the control circuit.

(Seventh Working Example)

FIG. **8** is a diagram illustrating a seventh working example according to the present embodiment. The present working example is a modified example of the fourth working example, and further includes the transistors M_3 , M_4 and a current source I_{b_add} . The transistor M_3 (M_4) is an NMOS transistor, having a gate terminal connected to the source terminal of the transistor M_1 (M_2) at a node N_5 (N_6), a source terminal connected to the current source I_{b_add} and a drain 20 terminal connected to the output terminal T_3 (T_4).

With this configuration, the voltage V_3 at the node N_3 is applied to the gate terminal of the transistor M_3 , and the voltage V_4 at the node N_4 is applied to the gate terminal of the transistor M_4 . Therefore, when the voltage V_3 (V_4) becomes 25 higher than voltage V_4 (V_3) due to the signal current, the drain current at the transistor M_4 (M_3) is increased and the drain current at the transistor M_4 (M_3) is decreased. Due to this, the signal current can be further amplified because it is possible to generate an output signal in which the drain current of the transistor M_3 (M_4) having been increased (decreased) corresponding to the signal current is added to the drain current of the transistor M_1 (M_2). (Eighth Working Example)

FIG. 9 is a diagram illustrating an eighth working example 35 according to the present embodiment. The present working example is a modified example of the fifth working example, and the resistors R_3 and R_4 are connected to the current source I_0 . With this configuration, the input signals (current I_1 and I_2) generated at the resistor R_3 and R_4 can be set without depending on manufacturing variation of the resistors R_3 and R_4 or the bias voltage V_C . For example, in the case where the current I_0 to be input from the current source I_0 has a current value $2I_b$, the current I_1 and I_2 become: $I_1 = I_b(1 - \Delta_R)$, and $I_2 = I_b(1 + \Delta_R)$.

(Ninth Working Example) FIG. **10** is a diagram illustrating a ninth working example according to the present embodiment. The present working example is a modified example of the first working example, and the control circuit includes an inverting amplifier circuit 50 A_1 (A_2) formed of a transistor M_{A11} (M_{A21}) and a current source I_{bA1} (I_{bA2}). The transistor M_{A11} (M_{A21}) is an NMOS transistor, having a source terminal grounded, a gate terminal connected to the node N_1 (N_2), and a drain terminal connected to the current source I_{bA1} (I_{bA2}) and to the gate terminal of the 55 transistor M_1 (M_2).

With this configuration, the voltage at the gate terminal of the transistor M_1 (M_2) is controlled such that the voltage at the gate terminal of the transistor M_{A11} (M_{A21}), namely, the voltage V_1 (V_2) at the node V_2 (V_3) becomes the gate-source ovltage V_3 (V_4) at the node V_4 (V_4) of the transistor V_4 (V_4) determined in accordance with current at the current source V_4 (V_4). Therefore, the voltage V_4 (V_4) can be equal to the gate-source voltage V_4 (V_4) by equalizing the device size of the transistors V_4 and V_4 or the current sources V_4 at the current sources V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current volumes at the current sources V_4 and V_4 and V_4 or the current volumes at the current volumes V_4 and V_4 and V_4 are V_4 and V_4 and V_4 are V_4 and V_4 and V_4 are V_4 are V_4 are V_4 and V_4 are V_4 are V_4 and V_4 are V_4 are V_4 are V_4 and V_4 are V_4 are V_4 and V_4 are V_4 are V_4 are V_4 are V_4 and V_4 are V_4 are V_4 are V_4 are

10

control circuit can be reduced and the voltage $V_1 \ (V_2)$ at the nodes N_1 and N_2 can be equalized with a more simple circuit. (Tenth Working Example)

FIG. 11 is a diagram illustrating a tenth working example according to the present embodiment. The present working example is a modified example of the first working example, and further includes transistors M_3 and M_4 and output terminals T_5 and T_6 . The transistor M_3 (M_4) is an NMOS transistor, having a drain terminal connected to the output terminal T_5 (T_6), a source terminal connected to the source terminal of the transistor M_1 (M_2) at the node N_5 (N_6), and a gate terminal connected to the control circuit. The voltage at the gate terminal of the transistor M_3 (M_4) is controlled by the control circuit.

With this configuration, the number of output terminals is increased and the larger number of multiple output signals can be output. A current value of the output signal output from each of the output terminals is determined by the device size ratio of each of the transistors. Note that the number of the transistors and the output terminals to be increased may be optionally selected, for example, same on the right side and left side of the passive element Z_1 or may be different in each side.

(Eleventh Working Example)

FIG. 12 is a diagram illustrating an eleventh working example according to the present embodiment. The present working example is a modified example of the first working example, and includes transistors M_{1a} (M_{2a}) and M_{1b} (M_{2b}) instead of the transistor M_1 (M_2). The amplifier circuit A_1 (A₂) forming the control circuit has the negative input terminal from which the bias voltage V_{C1} is applied, and has the positive input terminal connected to the node N_1 (N_2). The transistor M_{1a} (M_{2a}) is a PMOS transistor, having a drain terminal connected to the resistor R_1 (R_2) and to the passive element Z_1 at the node N_3 (N_4), a gate terminal connected to the control circuit, and a source terminal connected to a source terminal of the transistor M_{1h} (M_{2h}). The transistor $M_{1b}(M_{2b})$ is an NMOS transistor, having the source terminal connected to the source terminal of the transistor M_{1a} (M_{2a}), a gate terminal from which a predetermined bias voltage V_{C2} is applied, and a drain terminal connected to the output terminal T_3 (T_4).

With this configuration, when the voltage at the gate terminal of the transistor M_{1a} (M_{2a}) becomes high, the gate-source voltage at the transistor M_{1a} (M_{2a}) and transistor M_{1b} (M_{2b}) becomes low, thereby decreasing the current flowing in the transistor M_{1a} (M_{2a}) and transistor M_{1b} (M_{2b}). In other words, the polarity becomes opposite to the transistor M_1 50 (M_2) of the first working example. Therefore, the bias voltage V_{C1} is received from the negative input terminal of the amplifier circuit A_1 (A_2) and the positive input terminal is connected to the node N_1 (N_2), thereby forming a feedback circuit and achieving to control the voltage V_1 (V_2) at the node N_1 55 (N_2) to be the bias voltage V_{C1} .

Further, according to the first working example, a gain from the gate terminal to the source terminal in the transistor M_1 (M_2) is substantially one; however, the gain from the gate terminal to the drain terminal in the transistor M_{1a} (M_{2a}) can be set at one or larger according to the present working example. Due to this, it is possible to make an open loop gain large and make a voltage difference between the positive input terminal and the negative input terminal of the amplifier circuit A_1 (A_2) small. Therefore, the control circuit according to the present working example is capable of accurately controlling the voltage at the gate terminal of the transistor M_{1a} (M_{2a}).

(Twelfth Working Example)

FIG. 13 is a diagram illustrating a twelfth working example according to the present embodiment. The present working example is a modified example of the eleventh working example, and further includes level shift circuits LS_1 and LS_2 . The level shift circuit LS_1 (LS_2) is connected to the control circuit, the gate terminal of the transistor M_{1a} (M_{2a}) and the gate terminal of the transistor M_{2b} (M_{1b}). The level shift circuit LS_1 (LS_2) converts the output voltage of the amplifier circuit A_1 (A_2) so as to match an operating point of the transistor M_{2b} (M_{1b}), and applies the converted voltage to the gate terminal of the transistor M_{2b} (M_{1b}).

With this configuration, when the output voltage of the amplifier circuit A_1 (A_2), namely, the voltage at the gate terminal of the transistor M_{1a} (M_{2a}) becomes high, operation 15 is executed such that the voltage at the gate terminal of the transistor M_{1b} (M_{2b}) becomes low. Due to this, the drain current at the transistor M_{1a} (M_{2b}) is further decreased, compared to the twelfth working example. Therefore, it is possible to make the gain from the gate terminal to the drain 20 terminal at the transistor M_{1a} (M_{2a}) large and make the voltage difference between the positive input terminal and the negative input terminal at the amplifier circuit A_1 (A_2) small. As a result, the voltage at the gate terminal of the transistor M_{1a} (M_{2a}) can be accurately controlled. 25 (Thirteenth Working Example)

FIG. 14 is a diagram illustrating a thirteenth working example according to the present embodiment. The present working example is a concrete example of the twelfth working example, in which the level shift circuits LS₁ and LS₂ are 30 formed of a plurality of the transistors inside the control circuit. The configuration of the control circuit is same as the eighth working example.

The level shift circuit $LS_1(LS_2)$ includes a transistor M_{LS11} (M_{LS21}) and a transistor M_{LS12} (M_{LS22}) . The transistor M_{LS11} 35 (M_{LS21}) is a PMOS transistor, having a drain terminal connected to the gate terminal of the transistor M_{1a} (M_{2a}) and to the drain terminal of the transistor M_{A11} (M_{A21}), a gate terminal diode-connected to the drain terminal, and a source terminal connected to a source terminal of the transistor 40 M_{LS12} (M_{LS22}). The transistor M_{LS12} (M_{LS22}) is an NMOS transistor, having the source terminal connected to the source terminal of the transistor M_{LS11} (M_{LS21}), a drain terminal connected to the gate terminal of the transistor $M_{2b}\left(M_{1b}\right)$ and to the drain terminal of the transistor M_{A13} (M_{A23}), and a gate 45 terminal diode-connected to the drain terminal. Thus, the bias current between the level shift circuit LS₁ (LS₂) and the amplifier circuit $A_1(A_2)$ can be shared by disposing the level shift circuit LS₁ (LS₂) inside the control circuit (amplifier circuits A₁ and A₂). Therefore, increase of the bias current in 50 the entire current amplifier circuit can be suppressed. (Fourteenth Working Example)

FIG. 15 is a diagram illustrating a fourteenth working example according to the present embodiment. The present working example is a modified example of the fourth working 55 example, in which the control circuit is formed of a single amplifier circuit A_1 . The amplifier circuit A_1 has the negative input terminal connected to the resistor R_1 at the node N_1 , and the positive input terminal connected to the resistor R_2 at the node N_2 . Further, the transistor M_2 has the gate terminal from which the bias voltage V_C is applied. The amplifier circuit A_1 compares the voltage V_1 at the node N_1 with the voltage V_2 at the node N_2 , and controls the voltage at the gate terminal of the transistor M_1 such that the voltage V_1 and V_2 become equal to a predetermined voltage set by the bias voltage V_C . 65 With this configuration, the number of components in the control circuit can be reduced.

12

(Fifteenth Working Example)

FIG. 16 is a diagram illustrating a fifteenth working example of the present embodiment. The present working example is a modified example of the eleventh working example, in which the control circuit is formed of the single amplifier circuit A_1 , same as the fourteenth working example. In this case, the polarity of the transistor M_{1a} is opposite to the polarity of the transistor M_1 of the fourteenth working example. Therefore, the amplifier circuit A_1 has the positive input terminal connected to the resistor R_1 at the node N_1 , and the negative input terminal connected to the resistor R_2 at the node N_2 . With this configuration, the number of components in the control circuit can be reduced. (Sixteenth Working Example)

FIG. 17 is a diagram illustrating a sixteenth working example of the present embodiment. The present working example is a modified example of the eleventh working example, in which the control circuit is formed of a commongate circuit including transistors M_5 and M_6 . The transistor M_5 (M_6) is a PMOS transistor, having a gate terminal from which the bias voltage V_{C1} is applied, a source terminal connected to the resistor R_1 (R_2) at the node N_1 (N_2), and a drain terminal connected to the gate terminal of the transistor M_{1a} (M_{2a}) and the current sources I_1 and I_2 .

With this configuration, the input signals received from the current sources I_1 and I_2 are applied to the resistors R_1 and R_2 via the transistors M_5 and M_6 . Further, the voltage at the source terminals of the transistors M_5 and M_6 , namely, the voltage V_1 and V_2 at the nodes N_1 and N_2 become substantially equal in the case of $\Delta_R << 1$, because the respective current are: $I_1 = I_b (1 + \Delta_R)$ and $I_2 = I_b (1 - \Delta_R)$. With this configuration, the amplifier circuit is not used as the control circuit, and therefore increase of the bias current can be suppressed. (Second Embodiment)

Next, a current amplifier circuit according to a second embodiment will be described with reference to FIGS. 18 to 20. Here, FIG. 18 is a diagram illustrating the current amplifier circuit according to the second embodiment. As illustrated in FIG. 18, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 of the passive element Z_1 is controlled by the control signal Cont. The configurations of other components are same as the first embodiment.

The passive element Z_1 according to the present embodiment may be formed of, for example, a plurality of resistors Rg_1 to Rg_3 connected in parallel and switches connected to the respective resistors in series, as illustrated in FIG. 19. The impedance element Z_1 (resistance value in this case) can be changed by controlling opening and closing of the respective switches by the control signal Cont. Additionally, there are other possible configurations in which a plurality of capacitor is connected in parallel instead of the resistors or the resistor and the capacitor are combined.

Also, as illustrated in FIG. 20, the passive element Z_1 may be configured by connecting a transistor M_R and a resistor Rg in parallel. By controlling voltage at a gate terminal of the transistor M_R with the control signal Cont, the passive element Z_1 can be variable resistor and the impedance element Z_1 can be controlled.

As described in the first embodiment, a signal current I_{SIG} is determined by the impedance element Z_1 . Therefore, in the current amplifier circuit according to the present embodiment, an amplification factor of the signal current can be controlled by controlling the impedance element Z_1 of the passive element Z_1 by the control signal Cont.

(Third Embodiment)

Next, a current amplifier circuit according to a third embodiment will be described with reference to FIG. 21. Here, FIG. 21 is a diagram illustrating the current amplifier circuit according to the third embodiment. As illustrated in FIG. 21, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 , and a control circuit. The configurations of the above components are same as the first embodiment. The current amplifier circuit according to the present embodiment further includes a transistor M_3 , a transistor M_4 , a passive element Z_2 , and current sources

The transistor M₃ (third transistor) is a PMOS transistor, having a drain terminal (first terminal) connected to a drain terminal of the transistor M_1 and to an output terminal T_3 , a gate terminal (control terminal) connected to a gate terminal of the transistor M₁ and to a control circuit, and a source terminal connected to the passive element Z_2 and to the cur- 20

The transistor M₄ (fourth transistor) is the PMOS transistor, having a drain terminal (first terminal) connected to a drain terminal of the transistor M₂ and to an output terminal T_4 , a gate terminal (control terminal) connected to a gate 25 terminal of the transistor M₂ and to the control circuit, and a source terminal connected to the passive element \mathbb{Z}_2 and to the current source I4.

The passive element Z₂ (second passive element) is connected to a source terminal of the transistor M₃ and a source 30 terminal of the transistor M_4 . In the passive element Z_2 , current I_{Z2} flows. Note that the configuration of the passive element Z_2 is same as the passive element Z_1 .

The current source I₃ is connected between the source terminal of the transistor M₃ and a power source and supplies 35 bias current I_b to the transistor M_3 . The current source I_4 is connected between the source terminal of the transistor M₄ and the power source, and supplies the bias current I_b to the transistor M₄.

Next, operation of the current amplifier circuit according to 40 the present embodiment will be described. When current I₁ (I_2) received from an input terminal T_1 (T_2) becomes larger, the control circuit controls the voltage at the gate terminal of the transistor M_1 (M_2) such that drain current I_{M1} (I_{M2}) at the transistor M_1 (M_2) becomes large. As a result, the voltage at 45 the gate terminal of the transistor M_1 (M_2) becomes high. In this instance, voltage at the gate terminal of the transistor M₃ (M_4) also becomes high because the gate terminal of the transistor M₃ (M₄) is connected to the control circuit. Since the transistor M_3 (M_4) is the PMOS transistor, the drain cur- 50 rent I_{M3} (I_{M4}) becomes small when the voltage at the gate terminal becomes high.

In the same manner, when the current I_1 (I_2) received from the input terminal T_1 (T_2) becomes small, the control circuit $(\mathrm{M_2})$ such that drain current $\mathrm{I}_{M1}\left(\mathrm{I}_{M2}\right)$ flowing in the transistor M_1 (M_2) becomes small. Therefore, the voltage at the gate terminal of the transistor M_1 (M_2) becomes low. Due to this, the voltage at the gate terminal of the transistor M_3 (M_4) also becomes low and the drain current I_{M3} (I_{M4}) becomes large. 60 Thus, the transistor M₃ (M₄) complementarily operates with respect to the transistor M_1 (M_2).

Therefore, when the current I₁ and I₂ are received from the input terminals T₁ and T₂, a difference between the current I₁ and current I_2 , namely, the current I_{Z2} corresponding to Δ_R flows in the passive element Z_2 , and the drain current in the transistors M_3 and M_4 become: $I_{M3}=I_b+I_{Z2}$, and $I_{M4}=I_b-I_{Z2}$.

14

Due to this, the signal current I_{SIG} contained in the output signal output from the output terminals T₃ and T₄ becomes a sum of $I_{M1}-I_{M2}$ and $I_{M3}-I_{M4}$.

As described above, in the current amplifier circuit according to the present embodiment, the signal current can be amplified larger than in the current amplifier circuit according to the first embodiment. Therefore, compared to the current amplifier circuit in the related art, the ratio between the bias current and the signal current can be improved. (Fourth Embodiment)

Next, a current amplifier circuit according to a fourth embodiment will be described with reference to FIG. 22. Here, FIG. 22 is a diagram illustrating the current amplifier circuit according to the fourth embodiment. As illustrated in FIG. 22, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 , a control circuit, a transistor M_3 , a transistor M_4 , a passive element Z_2 , and current sources I₃ and I₄. According to the present embodiment, a gate terminal of the transistor M_3 (M_4) is connected to a source terminal of the transistor M_1 (M_2), and the configurations of other components are same as the third embodi-

Next, operation of the current amplifier circuit according to the present embodiment will be described. Voltage V_1 (V_2) at a node N_1 (N_2) is controlled to be same by the control circuit, and therefore, when current I_1 (I_2) received from an input terminal $T_1(T_2)$ becomes larger, voltage $V_3(V_4)$ at a node N_3 (N_4) becomes large. A gate terminal of the transistor M_3 (M_4) is connected to a source terminal of the transistor M_1 (M_2), namely, the node N_3 (N_4), and therefore the voltage at the gate terminal of the transistor M_3 (M_4) becomes high. Since the transistor M_3 (M_4) is a PMOS transistor, drain current I_{M3} (I_{M4}) becomes small when the voltage at the gate terminal becomes high.

In the same manner, when the current I_1 (I_2) received from the input terminal T_1 (T_2) becomes small, the voltage V_3 (V_4) at the node N₃ (N₄) becomes low, and also the voltage at the gate terminal of the transistor M₃ (M₄) becomes low and the drain current I_{M3} (I_{M4}) becomes large. Thus, the transistor M_3 (M₄) complementarily operates with respect to the transistor M_1 (M_2). Therefore, in the current amplifier circuit according to the present embodiment, signal current I_{SIG} contained in an output signal output from the output terminals T₃ and T₄ is a sum of I_{M1} – I_{M2} and I_{M3} – I_{M4} , and signal current can be amplified larger than the current amplifier circuit according to the first embodiment, same as the third embodiment. Meanwhile, according to the present embodiment, in the case where the current I₁ and I₂ are small and the transistors M₃ and M₄ operate in a saturation region, the current I_{M3} and I_{M4} change in accordance with Δ_R . Therefore, the source terminals of the transistors M_3 and M_4 may be short-circuited ($Z_2=0$). (Fifth Embodiment)

Next, a current amplifier circuit according to a fifth controls the voltage at the gate terminal of the transistor M_1 55 embodiment will be described with reference to FIGS. 23 to 25. Here, FIG. 23 is a diagram illustrating the current amplifier circuit according to the fifth embodiment. As illustrated in FIG. 23, the present embodiment is a modified example of the first embodiment, and includes a switching circuit whereby paths are switched such that current I_{M1} flowing in a transistor M_1 and current I_{M2} flowing in a transistor M_2 are alternately switched. The switching circuit includes a switch 1 and a

> The switch 1 (first switch) is a chopper circuit that switches a path between a path of the current I_{M1} output from a drain terminal of the transistor M_1 and a path of the current I_{M2} output from a drain terminal of the transistor M₂. The switch

1 is disposed between output terminals T₃, T₄ of the current amplifier circuit and input terminals T₅, T₆ of a post-stage circuit where output signals are received from the current amplifier circuit. The switch 1 alternately switches the path between the path in which the output terminal T₃ and the input terminal T₅ are connected and also the output terminal T₄ and the input terminal T_6 are connected, and the path in which the output terminal T₃ and the input terminal T₆ are connected and also the output terminal T_4 and input terminal T_5 are

In the case where the output terminal T_3 and the input terminal T₅ are connected and the output terminal T₄ and the input terminal T_6 are connected by the switch 1, the current I_{M1} output from the output terminal T_3 is received in the input terminal T_5 and the current I_{M2} output from the output terminal T_4 is received in the input terminal T_6 . When the switch 1 switches the path, the output terminal T₃ is connected to the input terminal T_6 and the output terminal T_4 is connected to the input terminal T_5 . Due to this, the current I_{M1} output from 20 the output terminal T_3 is received in the input terminal T_6 , and the current I_{M2} output from the output terminal T_4 is received in the input terminal T_5 .

The switch 2 (second switch) is a chopper circuit that the other end of a resistor R_1 , namely, a node N_1 , and a path of current I_2 received from the other end of a resistor R_2 , namely, a node N₂. The switch 2 is disposed between the input terminals T_1 , T_2 and the nodes N_1 , N_2 in the current amplifier circuit. The switch 2 alternately switches the path between the 30 path in which the input terminal T_1 and the node N_1 are connected and also the input terminal $T_{\rm 2}$ and the node $N_{\rm 2}$ are connected, and the path in which the input terminal T_1 and the node N_2 are connected and also the input terminal T_2 and the node N₁ are connected.

In the case where the input terminal T_1 and the node N_1 are connected and the input terminal T2 and the node N2 are connected by the switch 2, the current I₁ received from the input terminal T₁ is received at the node N₁ via a control circuit and the current I₂ received from the input terminal T₂ 40 is received at the node N₂ via the control circuit. When the switch 2 switches the path, the input terminal T_1 is connected to the node N_2 and the input terminal T_2 is connected to the node N₁. Due to this, the current I₁ received from the input terminal T_1 is received at the node N_2 via the control circuit, 45 and the current I₂ received from the input terminal T₂ is received at the node N₁ via the control circuit.

Switching timings of the switch 1 and the switch 2 are synchronized. The switches 1 and 2 operate such that the switch 2 connects the input terminal T_1 (T_2) to the node N_1 50 (N_2) in the case where the switch 1 connects the output terminal T_3 (T_4) to the input terminal T_5 (T_6), and the switch 2 connects the input terminal $T_1(T_2)$ to the node $N_2(N_1)$ in the case where the switch 1 connects the output terminal T_3 (T_4) to the input terminal T_6 (T_5).

FIGS. 24A to 24F are diagrams for describing changes of a signal by the operation of the switching circuit. In the following, a description will be given for the case in which a signal component exists in a low-frequency region of an input signal as illustrated in FIG. 24A. The current amplifier circuit some- 60 times generates noise in the process of amplifying the input signal. Particularly, flicker noise (1/f noise) may be generated in the low-frequency region as illustrated in FIG. **24**B. In the case where such noise is generated, the output signal of the current amplifier circuit becomes a signal in which a signal component and a noise component are superimposed in the low-frequency region, as illustrated in FIG. 24C.

16

On the other hand, in the case where the signal is amplified while the switching circuit switches the path at a predetermined frequency, the signal component contained in the input signal is shifted to a high-frequency region by an amount of frequency switched by the switch 2 as illustrated in FIG. 24D. The output signal becomes a signal in which the signal component shifted to the high-frequency region and the noise component in the above-mentioned low-frequency region are superimposed. Therefore, as illustrated in FIG. 24E, the signal component contained in the output signal and the noise component are not overlapped.

In the output signal, switching frequency is combined again by the switch 1. Here, in the case of setting phases of the switching frequency of the switch 1 and switch 2 inversed, the signal component contained in the output signal is returned to the low-frequency region, and the noise component is shifted to the high-frequency region, as illustrated in FIG. 24F. Therefore, in the current amplifier circuit according to the present embodiment, the noise component can be easily removed from the output signal by a filter such as a lowpass filter. With this configuration, influence of the noise generated in the current amplifier circuit can be suppressed. (First Working Example)

FIG. 25 is a first working example of the present embodiswitches the path between a path of current I₁ received from 25 ment. The present working example is a concrete example of the fifth embodiment, where the switching circuit is applied in the current amplifier circuit of the first working example according to the first embodiment. With this configuration, the noise generated at the current amplifier circuit can be easily removed from the output signal.

(Sixth Embodiment)

Next, a current amplifier circuit according to a sixth embodiment will be described with reference to FIGS. 26 and 27. Here, FIG. 26 is a diagram illustrating the current ampli-35 fier circuit according to the sixth embodiment. As illustrated in FIG. 26, the present embodiment is a modified example of the fifth embodiment, and includes a switching circuit whereby paths are switched such that current I_{M1} flowing in a transistor M_1 and current I_{M2} flowing in a transistor M_2 are alternately switched. In the description of the present embodiment, a control circuit portion for controlling voltage at a gate terminal of the transistor M_1 is referred to as control circuit 1, and a control circuit portion for controlling voltage at a gate terminal of the transistor M₂ is referred to as control circuit 2. The configurations of other components are same as the first embodiment. The switching circuit includes a switch 1, a switch 3, a switch 4, and a switch 5. Note that description for the configuration of the switch 1 will be omitted here as is same as the fifth embodiment.

The switch 3 (third switch) is a chopper circuit that switches a path between one end of a resistor R₁, namely, a path of current I₁ output from the side of a node N₃ of the resistor R₁, and one end of a resistor R₂, namely, a path of current I₂ output from the side of a node N₄ of the resistor R₂. The switch 3 is disposed between the resistors R_1 , R_2 and the nodes N₃, N₄. The switch 3 alternately switches the path between the path in which the resistor R₁ and the node N₃ are connected and also the resistor R₂ and the node N₄ are connected, and the path in which the resistor R_1 and the node N_4 are connected and also the resistor R₂ and the node N₃ are

In the case where the resistor R_1 and the node N_3 are connected and the resistor R₂ and the node N₄ are connected by the switch 3, the current I₁ output from one end of the resistor R₁ is received at the node N₃ and the current I₂ output from one end of the resistor R2 is received at the node N4. When the switch 3 switches the path, the resistor R_1 is con-

nected to the node N_4 and the resistor R_2 is connected to the node N_3 . Due to this, the current I_1 output from one end of the resistor R_1 is received at the node N_4 , and the current I_2 output from one end of the resistor R_2 is received at the node N_3 .

The switch 4 (fourth switch) is a chopper circuit that 5 switches the path for the current I_1 and I_2 received in the control circuit 1 in order to control the voltage at the gate terminal of the transistor M_1 . The switch 4 is disposed between the input terminals T_1 , T_2 and the control circuit 1. The switch 4 alternatively switches the path between the path in which the input terminal T_1 and the control circuit 1 are connected, and the path in which the input terminal T_2 and the control circuit 1 are connected.

In the case where the input terminal T_1 and the control circuit 1 are connected by the switch 4, the voltage at the input 15 terminal T_1 , namely the voltage at the other end of the resistor R_1 is received in the control circuit 1. When the switch 4 switches the path, the input terminal T_2 is connected to the control circuit 1 and the voltage at the input terminal T_2 , namely the voltage at the other end of the resistor R_2 is 20 received in the control circuit 1.

The switch 5 (fifth switch) is a chopper circuit that switches the path for the current I_1 and I_2 received in the control circuit 2 in order to control the voltage at the gate terminal of the transistor M_2 . The switch 5 is disposed between the input terminals T_1 , T_2 and the control circuit 2. The switch 5 alternatively switches the path between the path in which the input terminal T_1 and the control circuit 2 are connected, and the path in which the input terminal T_2 and the control circuit 2 are connected.

In the case where the input terminal T_1 and the control circuit ${\bf 2}$ are connected by the switch ${\bf 5}$, the voltage at the input terminal T_1 , namely, the voltage at the other end of the resistor R_1 is received in the control circuit ${\bf 2}$. When the switch ${\bf 5}$ switches the path, the input terminal T_2 is connected to the 35 control circuit ${\bf 2}$ and the voltage at the input terminal T_2 , namely, the voltage at the other end of the resistor R_2 is received in the control circuit ${\bf 2}$.

Switching timings of the switches 1, 3, 4 and 5 are synchronized. In the case where the switch 1 connects an output 40 terminal T_3 (T_4) to an input terminal T_5 (T_6), the switch 3 connects the resistor R_1 (R_2) to the node N_3 (N_4), the switch 4 connects the input terminal T_1 to the control circuit 1, and the switch 5 connects the input terminal T_2 to the control circuit 2. In this case, signal current of the current I_1 (I_2) received 45 from the input terminal T_1 (T_2) is amplified and received in the input terminal T_5 (T_6). The control circuit 1 (control circuit 2) forms a negative feedback circuit together with the transistor M_1 (M_2) and the resistor R_1 (R_2), and controls the voltage at the gate terminal of the transistor M_1 (M_2) such that 50 voltage at a node N_1 (N_2) becomes a predetermined voltage.

On the other hand, in the case where the switch 1 connects an output terminal T_3 (T_4) to an input terminal T_6 (T_5), the switch 3 connects the resistor R_1 (R_2) to the node N_4 (N_3), the switch 4 connects the input terminal T_2 to the control circuit 55 1, and the switch 5 connects the input terminal T_1 to the control circuit 2. In this case, the signal current of the current I_1 (I_2) received from the input terminal T_1 (T_2) is amplified and received in the input terminal T_5 (T_6). The control circuit 1 (control circuit 2) forms the negative feedback circuit 60 together with the transistor M_1 (M_2) and the resistor R_2 (R_1), and controls the voltage at the gate terminal of the transistor M_1 (M_2) such that voltage at a node N_2 (N_1) becomes the predetermined voltage.

With the above-described structure, in the current amplifier 65 circuit according to the present embodiment, noise component can be easily removed from the output signal by a filter

such as a lowpass filter in the same manner as the fifth embodiment. Due to this, influence of the noise generated in the current amplifier circuit can be suppressed. (First Working Example)

18

FIG. 27 is a diagram illustrating a first working example of the present embodiment. The present working example is a concrete example of the present embodiment, where the switching circuit is applied in a fourth working example of the first embodiment. In the present working example, the control circuit 1 is an amplifier circuit A_1 , and the control circuit 2 is an amplifier circuit A_2 . With this configuration, the noise generated in the current amplifier circuit can be easily removed from the output signal. (Seventh Embodiment)

Next, a current amplifier circuit according to a seventh embodiment will be described with reference to FIGS. **28** to **30**. Here, FIG. **28** is a diagram illustrating the current amplifier circuit according to the seventh embodiment. As illustrated in FIG. **28**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a passive element Z_1 , and a control circuit. In other words, the current amplifier circuit according to the present embodiment is formed of a current amplifier circuit according to the above-described embodiments in a single-ended configuration.

The transistor M_1 (first transistor) is an NMOS transistor having a source terminal (first terminal) connected to the resistor R_1 and the passive element Z_1 at a node N_3 , a drain terminal (second terminal) connected to an output terminal T_3 , and a gate terminal (control terminal) connected to the control circuit. Voltage at the gate terminal of the transistor M_1 is controlled by the control circuit, and drain current I_{M1} flows in the transistor M_1 .

The resistor R_1 (first resistor) has one end connected to the source terminal of the transistor M_1 and to the passive element Z_1 at the node N_3 , and the other end connected to the control circuit at a node N_1 . The resistor R_1 may be a fixed resistor having a constant resistance value, or may be a sensor device that detects a state of an object by change of the resistance value.

The passive element Z_1 (first passive element) has one end connected to the source terminal of the transistor M_1 and to one end of the resistor R_1 at the node N_3 , and the other end connected to the ground (reference potential). The passive element Z_1 is formed of at least a capacitor, and an operating point of the current amplifier circuit is fixed by this capacitor. The passive element Z_1 may include resistor.

The control circuit is connected to the gate terminal of the transistor \mathbf{M}_1 , the other end of the resistor \mathbf{R}_1 , and an input terminal \mathbf{T}_1 . The control circuit controls the voltage at the gate terminal of the transistor \mathbf{M}_1 such that voltage at the other end of the resistor \mathbf{R}_1 becomes equal to a predetermined voltage (first predetermined voltage), namely, such that voltage V_1 at the node N_1 becomes equal to the predetermined voltage. Further, the control circuit executes control such that current I_1 received from the input terminal T_1 is applied to the resistor R.

Next, operation of the current amplifier circuit according to the present embodiment will be described. In the following description, the resistor R_1 is a fixed resistor: $R_1 \! = \! R_C$. The voltage V_1 at the node N_1 is controlled by the control circuit to be a voltage value V_C ($V_1 \! = \! V_C$). Also, the current I_1 is: $I_1 \! = \! I_b$ (1+\$\Delta_R\$). More specifically, a description will be given for a case in which the current amplifier circuit is connected to a sensor device, and signal current is received from the input terminal T_1 .

When the current I_1 is received from the input terminal T_1 , the voltage V_3 at the node N_3 is: $V_3 = V_1 + R_1 I_1$. When follow-

ing values $R_1=R_C$, $I_1=I_b(1+\Delta_R)$, and $V_1=V_C$ are plugged into the above formula, the voltage V_3 becomes: $V_3=V_C+R_1I_b+R_1I_b\Delta_R$.

Since the passive element Z_1 is connected between the node N_3 and the ground, the voltage V_3 at the node N_3 is 5 applied. The passive element Z_1 includes the capacitor, and therefore direct current does not flow. For this reason, following current I_{Z1} corresponding to an AC component of the voltage V_3 , namely, $R_1I_b\Delta_R$ flows in the passive element Z_1 , and the current I_{Z1} is: $I_{Z1} = R_1I_b\Delta_R/Z_1$. Due to this, the current I_{M1} flowing in the transistor M_1 becomes: $I_{M1} = I_1 + I_{Z1} = I_b + \Delta_R I_b$, $+R_CI_b\Delta_R/Z_1$. According to the present embodiment, the current I_{M1} becomes an output signal output from the output terminal T_3 .

Therefore, bias current I_B flowing in the entire circuit 15 becomes: $I_B = I_b$. And, signal current I_{SIG} contained in the output signal becomes: $I_{SIG} = \Delta_R I_b + R_C I_b \Delta_R / Z_1$. As described above, the signal current is amplified and further amplification of the bias current can be suppressed in the current amplifier circuit according to the present embodiment, same 20 as the above-described embodiment. Due to this, the ratio between the bias current and the signal current can be improved and power consumption in the current amplifier circuit can be suppressed, compared to the current amplifier circuit according to the related art. (First Working Example)

FIG. 29 is a first working example of the present embodiment. According to the present working example, the current amplifier circuit includes an amplifier circuit A_1 as a control circuit. The amplifier circuit A_1 has a positive input terminal 30 from which predetermined bias voltage V_C is applied, a negative input terminal connected to the other end of the resistor R_1 at the node N_1 , and an output terminal connected to the gate terminal of the transistor M_1 . Further, a resistor R_3 is connected to the input terminal T_1 , and current T_1R_3 generated 35 at the resistor T_3 becomes an input signal. The resistors T_3 and T_3 are sensor devices having following resistance values that change in the opposite direction, centering a predetermined resistance value T_1 0.

In the following, operation of the control circuit (amplifier circuit A_1) according to the present working example will be described. The amplifier circuit A_1 forms a feedback circuit together with the transistor M_1 and the resistor R_1 , and executes feedback control such that the voltage at the positive and negative terminals of the amplifier circuit A_1 become 45 equal. In other words, the amplifier circuit A_1 controls the voltage at the gate terminal of the transistor M_1 such that the voltage at the negative input terminal (voltage V_1 at the node V_1) becomes equal to the bias voltage V_2 . With this configuration, the voltage V_1 at the node V_1 is controlled to be equal 50 to the bias voltage V_2 applied to the positive input terminal of the amplifier circuit V_2 .

Note that the current consumed by the operation of the amplifier circuit A_1 is smaller than the bias current received in the current amplifier circuit. Therefore, the ratio between the 55 bias current and the signal current can be improved in the current amplifier circuit according to the present working example, compared to the current amplifier circuit according to the related art.

(Second Working Example)

FIG. 30 is a second working example of the present embodiment. The present working example is a concrete example of the first working example, and formed of an amplifier circuit in which the amplifier circuit A_1 of the first working example includes a plurality of transistors. Further, the passive element Z_1 includes the capacitor and the resistor. The amplifier circuit A_1 includes a transistor M_{411} , a transis-

20

tor M_{A12} , a transistor M_{A13} , a transistor M_{A14} , and a current source I_{bA1} . The transistors M_{A11} and M_{A12} are NMOS transistors and the transistors M_{A13} and M_{A14} are PMOS transistors

The transistor \mathbf{M}_{A11} has a gate terminal from which the predetermined bias voltage \mathbf{V}_C is applied, and a source terminal connected to the current source \mathbf{I}_{bA1} . The transistor \mathbf{M}_{A12} has a gate terminal connected to the node \mathbf{N}_1 , and a source terminal connected to the current source \mathbf{I}_{bA1} . The transistor \mathbf{M}_{A13} and the transistor \mathbf{M}_{A14} form a current mirror circuit, and a drain terminal of the transistor \mathbf{M}_{A14} is connected to the gate terminal of the transistor \mathbf{M}_1 . With this configuration, the voltage at the transistor \mathbf{M}_1 is controlled by the amplifier circuit \mathbf{A}_1 such that the voltage \mathbf{V}_1 at the node \mathbf{N}_1 becomes equal to the bias voltage \mathbf{V}_C . (Eighth Embodiment)

Next, a current amplifier circuit according to an eighth embodiment will be described with reference to FIGS. **31** and **32**. Here, FIG. **31** is a diagram illustrating the current amplifier circuit according to the eighth embodiment. As illustrated in FIG. **31**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a passive element Z_1 , and a control circuit, and impedance element Z_1 of the passive element Z_1 is controlled by a control signal Cont. The configurations of other components are same as the seventh embodiment.

The passive element Z_1 according to the present embodiment may include, for example, a plurality of resistors connected in parallel, switches connected to the respective resistors in series, and a single capacitor connected to the respective resistors in series, as illustrated in FIG. 32. The impedance element Z_1 can be changed by controlling opening and closing of each switch with the control signal Cont. In the current amplifier circuit according to the present embodiment, an amplification factor of the signal current can be controlled by controlling the impedance element Z_1 of the passive element Z_1 with the control signal Cont. Meanwhile, the passive element Z_1 may include a plurality of capacitor connected in series to each of the resistors. Frequency characteristics of the passive element Z_1 can be optionally set by adjusting time constant of the resistor and the capacitor connected in series. For example, the frequency characteristics of the passive element Z_1 can be set constant by matching the time constant before and after switching of the switch. (Ninth Embodiment)

Next, an integrator according to a ninth embodiment will be described with reference to FIGS. 33 to 39. Here, FIG. 33 is a diagram illustrating the integrator according to the ninth embodiment. As illustrated in FIG. 33, the integrator according to the present embodiment includes a current amplifier circuit according to the above-described embodiments and an integrating element that integrates an output signal of the current amplifier circuit, and includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 , and a control circuit. The configurations of the above components are same as a current amplifier circuit according to the first embodiment.

The integrator according to the present embodiment further includes a capacitor element C connected to output terminals T_3 and T_4 . The capacitor element C is formed including at least the capacitor. The capacitor element C integrates the output signal from the output terminals T_3 and T_4 . The integrator can be easily created by the capacitor element C because the output signal of the current amplifier circuit is current

(First Working Example)

FIG. 34 is a first working example of the present embodiment. The present working example is a modified example of the first working example according to the first embodiment, and includes a capacitor C_0 as the capacitor element C and 5 further includes current sources I_3 and I_4 . The capacitor C_0 is connected to the output terminals T_3 and T_4 , and integrates the output signals. Current I_3 and I_4 of the current sources I_3 and I_4 are: $I_3 = I_4 = I_b$. Therefore, only signal current I_{SIG} contained in the output signal can be integrated by the capacitor C_O .

21

FIG. 35 is a second working example of the present embodiment. The present working example is a modified example of the first working example, and includes the capacitor C_0 and a resistor R_C connected to the capacitor C_0 in 15 series. With this configuration, phase compensation can be executed by inserting a zero point into the frequency characteristics. In this manner, the operation can be stabilized. (Third Working Example)

FIG. 36 is a third working example of the present embodi- 20 ment. The present working example is a modified example of the first working example, and includes capacitor C_1 and C_2 as the capacitor element C. The capacitor C_1 (first capacitor) is connected between ground and the output terminal T₃, namely, between the ground and a drain terminal of the tran- 25 sistor M_1 . The capacitor C_2 (second capacitor) is connected between the ground and the output terminal T_4 , namely, between the ground and a drain terminal of the transistor M₂. In the capacitor C_1 and C_2 , the signal current contained in the output signal from the output terminals T_3 and T_4 is integrated. Meanwhile, in the case of using the integrator according to the present working example as a filter, the resistor may be connected to the capacitor C₁ and C₂ in series, same as the second working example. Due to this, the zero is introduced into the frequency characteristics, thereby achieving to per- 35 form the phase compensation and stabilize the operation. (Fourth Working Example)

FIG. 37 is a fourth working example of the present embodiment. The present working example is a modified example of the third embodiment, and includes the capacitor C_0 connected between the output terminals T_3 and T_4 as the capacitor element C. According to the present working example also, only the signal current I_{SIS} contained in the output signal can be integrated by the capacitor C_O . (Fifth Working Example)

FIG. 38 is a fifth working example of the present embodiment. The present working example is a modified example of the fourth embodiment, and includes the capacitor C₁ and C₂ as the capacitor element, and further includes an amplifier circuit A_{integ}. The amplifier circuit A_{integ} has differential 50 inputs and differential outputs, and has a positive input terminal connected to the output terminal T₃ and a negative input terminal connected to the output terminal T_4 . The capacitor C_1 (C_2) is connected between the positive input terminal T_3 (negative input terminal T₄) and the negative output terminal 55 T_7 (positive output terminal T_8) of the amplifier circuit A_{integ} . With this configuration, the input terminals of the amplifier circuit Ainteg are virtually shorted, and the voltage between input terminals becomes equal. Therefore, even when an output voltage range of the current amplifier circuit is narrow, the 60 output signal can be integrated. (Sixth Working Example)

FIG. 39 is a diagram illustrating a sixth working example of the present embodiment. The present working example is a modified example of the first working example of the seventh embodiment, and includes the capacitor C_1 and C_2 as the capacitor element, and further includes the amplifier circuit

22

 A_{integ} . The configurations of the capacitor C_1 , C_2 and the amplifier circuit A_{integ} are same as the fifth working example. With this configuration, the input terminals of the amplifier circuit A_{integ} are virtually shorted, and the voltage between the input terminals of the amplifier circuit A_{integ} becomes equal. Therefore, even when an output voltage range of the current amplifier circuit is narrow, the output signal can be integrated. Further, the voltage between input and output of a switch $\bf{1}$, namely, between the output terminals T_3 , T_4 and the input terminals T_5 and T_6 becomes small, and therefore, in the case of implementing the switch $\bf{1}$ in a MOS transistor, it is possible to suppress distortion of a signal caused by fluctuation of ON-resistance of the switch. (Tenth Embodiment)

Next, an AD converter according to a tenth embodiment will be described with reference to FIGS. 40 to 42. Here, FIG. 40 is a diagram illustrating the AD converter according to the tenth embodiment. As illustrated in FIG. 40, the AD converter according to the present embodiment includes the current amplifier according to the above-described embodiments, a current-voltage conversion circuit, and an AD conversion circuit ADC. In FIG. 40, the configuration of the current amplifier is same as the first embodiment.

The current-voltage conversion circuit is connected to output terminals T_3 and T_4 of the current amplifier circuit and the AD conversion circuit ADC. The current-voltage conversion circuit converts differential signal current (output signal) output from the current amplifier circuit to differential signal voltage, and the differential signal voltage is received in the AD conversion circuit ADC. Meanwhile, in the case where the input signal of the AD conversion circuit ADC is current, the current-voltage conversion circuit is unnecessary. In this case, for example, the output terminals T_3 and T_4 of the current amplifier circuit may be directly connected to the AD conversion circuit ADC.

The AD conversion circuit ADC converts the differential signal voltage received via the current-voltage conversion circuit to a digital signal. This enables a state change of an object detected by a sensor to be output as the digital signal. In the AD converter according to the present embodiment, the AD conversion circuit ADC can be optionally selected. For example, it is possible to use a pipeline AD conversion circuit, a successive-approximation type AD conversion circuit, a single slope AD conversion circuit, a discrete time $\Delta\Sigma AD$ conversion circuit, a continuous time $\Delta\Sigma AD$ conversion circuit, and so on.

(First Working Example)

FIG. 41 is a diagram illustrating a first working example of the AD converter according to the present embodiment. The present working example is a concrete example of the AD converter in FIG. 40, and the current-voltage converter includes current sources I_3 , I_4 and a resistor R_{ν} . The current sources I_3 and I_4 apply bias current I_b , and the resistor R_{ν} is connected between the output terminals I_3 and I_4 . The differential signal current flows in the resistor R_{ν} , thereby generating voltage at both ends of the resistor R_{ν} , and the generated voltage is received by the AD conversion circuit ADC as the differential signal voltage.

(Second Working Example)

FIG. 42 is a diagram illustrating a second working example of the AD converter according to the present embodiment. The present working example is a modified example of the first working example, and the current-voltage converter includes resistors R_{ν_1} , R_{ν_2} and transistors M_{ν_1} , M_{ν_2} . The resistors R_{ν_1} and R_{ν_2} are connected between the output terminals T_3 and T_4 in series. The transistor M_{ν_1} (M_{ν_2}) is a PMOS transistor, having a gate terminal mutually connected

with a gate terminal of the other transistor, a source terminal connected to a power source, and a drain terminal connected to the output terminals T_3 (T_4). The resistors $R_{\nu 1}$ and $R_{\nu 2}$ have nodes connected to nodes of the transistors $M_{\nu 1}$ and $M_{\nu 2}$. With this configuration, the output signal of the current amplifier circuit can be converted to the voltage. (Eleventh Embodiment)

Next, a current amplifier circuit according to an eleventh embodiment will be described with reference to FIGS. 43 and 44. Here, FIG. 43 is a diagram illustrating the current amplifier circuit according to the eleventh embodiment. As illustrated in FIG. 43, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a passive element Z_1 , and a control circuit. The configurations of the above components are same as the first embodiment. The current amplifier circuit according to the present embodiment further includes a transistor M_{C1} and a transistor M_{C2} .

The transistor M_{C1} (fifth transistor) is an NMOS transistor, having a source terminal (first terminal) connected to an input 20 terminal T_1 and a drain terminal (second terminal) connected to the control circuit and the other end of the resistor R_1 at a node N_1 , and applied with a predetermined bias voltage V_{c2} (third predetermined voltage) from a gate terminal (control terminal). In other words, the transistor M_{C1} forms a companion-gate circuit.

The transistor M_{c2} (sixth transistor) is an NMOS transistor, having a source terminal (first terminal) connected to an input terminal T_2 and a drain terminal (second terminal) connected to the control circuit and the other end of the resistor R_2 at the 30 node N_2 , and applied with the predetermined bias voltage V_{c2} from a gate terminal (control terminal). In other words, the transistor M_{c2} forms a common-gate circuit.

With this configuration, the current amplifier circuit according to the present embodiment can suppress influence 35 of the noise of the control circuit onto the output signal. The reason is as follows.

In a case where the control circuit and the input terminals T_1 and T_2 are directly connected as illustrated in the current amplifier circuit according to the first embodiment, a noise 40 component is superimposed on current I_1 and I_2 input from the input terminals T_1 and T_2 respectively due to the influence of the noise of the control circuit. Then, the noise component contained in the current I_1 and I_2 is converted by the resistors R_1 and R_2 respectively to the voltage, converted by the passive 45 element Z_1 to the current, and superimposed on the output signal. For this reason, for the use of low noise to be required, the control circuit for the low noise is necessary.

On the other hand, in the current amplifier circuit according to the present embodiment, the transistors M_{c1} and M_{c2} are 50 respectively connected between the control circuit and the input terminals T_1 and T_2 , the impedance when the input terminals T_1 and T_2 are viewed from the control circuit becomes high, the noise component contained in the current I_1 and I_2 can be reduced. Therefore, influence of the noise of 55 the control circuit on the output signal can be suppressed. (First Working Example)

FIG. 44 is a diagram illustrating a first working example of the present embodiment. The present working example is a concrete example of the present embodiment, where the transistors M_{c1} and M_{c2} are provided in the third working example (see FIG. 4) according to the first embodiment.

As described in the present working example, in a case where the transistor M_{c1} is provided between an amplifier circuit A_1 and a resistor R_3 , an input conversion noise V_{n1} of 65 the amplifier circuit A_1 is applied to the node N_1 , the impedance of the input terminal T_1 viewed from the amplifier circuit

24

 A_1 becomes $R_3 \times gm_{\mathcal{M}c1} \times ro_{\mathcal{M}c1}$. Here, $gm_{\mathcal{M}c1}$ is the transconductance of the transistor M_{c1} , and $ro_{\mathcal{M}c1}$ is the output resistance of the transistor M_{c1} . In the case of $1 << gm_{\mathcal{M}c} \times ro_{\mathcal{M}c1}$, the voltage (noise voltage) according to the noise component applied to the source terminal of the transistor M_1 (the node N_3) becomes $V_{n1} + V_{n1} \times R_1 / (R_3 \times gm_{\mathcal{M}c1} \times ro_{\mathcal{M}c1}) \approx V_{n1}$.

On the other hand, as described in the third working example of the first embodiment, in a case where the amplifier circuit A_1 and the resistor R_3 are directly connected, the input conversion noise V_{n1} of the amplifier circuit A_1 is applied to the node N_1 , the impedance of the input terminal T_1 viewed from the amplifier circuit A_1 becomes R_3 . Therefore, the noise component of V_{n1}/R_3 is superimposed on the current I_1 , and the noise component is converted into a voltage by the resistor R_1 . As a result, the noise voltage applied to the source terminal of the transistor M_1 (the node N_3) becomes $V_{n1} + V_{n1} \times R_1/R_3 = V_{n1}(R_1 + R_3)/R_3$.

Thus, the noise voltage applied to the node N_3 can be reduced by disposing the transistor M_{c1} compared to the case where the amplifier circuit A_1 and the resistor R_3 are directly connected. The same thing is applied for the transistor M_{c2} . Therefore, as described above, influence of the noise of the control circuit onto the output signal can be suppressed. (Twelfth Embodiment)

Next, a current amplifier circuit according to a twelfth embodiment will be described with reference to FIGS. **45** and **46**. Here, FIG. **45** is a diagram illustrating the current amplifier circuit according to the twelfth embodiment. As illustrated in FIG. **45**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a passive element Z_1 , and a control circuit. The configurations of the above components are same as the seventh embodiment. The current amplifier circuit according to the present embodiment further includes a transistor M_{C1} .

The transistor M_{C1} (second transistor) is an NMOS transistor, having a source terminal (first terminal) connected to an input terminal T_1 and a drain terminal (second terminal) connected to the control circuit and the other end of the resistor R_1 at a node N_1 , and a predetermined bias voltage V_{c2} (second predetermined voltage) is input from a gate terminal (control terminal). In other words, the transistor M_{c1} forms a common-gate circuit.

With this configuration, the current amplifier circuit according to the present embodiment can suppress influence of the noise of the control circuit onto the output signal. (First Working Example)

FIG. **46** is a diagram illustrating a first working example of the present embodiment. The present working example is a concrete example of the present embodiment, where the transistor M_{c1} is provided in the first working example (see FIG. **29**) of the seventh embodiment.

As described in the present working example, in a case where the transistor \mathbf{M}_{c1} is provided between an amplifier circuit \mathbf{A}_1 and a resistor \mathbf{R}_3 , an input conversion noise \mathbf{V}_{n1} of the amplifier circuit \mathbf{A}_1 is applied to the node \mathbf{N}_1 , the impedance of the input terminal \mathbf{T}_1 viewed from the amplifier circuit \mathbf{A}_1 becomes $\mathbf{R}_3 \times \mathbf{gm}_{Mc1} \times \mathbf{ro}_{Mc1}$. Here, \mathbf{gm}_{Mc1} is the transconductance of the transistor \mathbf{M}_{c1} , and \mathbf{ro}_{Mc1} is the output resistance of the transistor \mathbf{M}_{c1} . In the case of $1 << \mathbf{gm}_{Mc1} \times \mathbf{ro}_{Mc1}$, the voltage (noise voltage) according to the noise component applied to the source terminal of the transistor \mathbf{M}_1 (the node \mathbf{N}_3) becomes $\mathbf{V}_{n1} + \mathbf{V}_{n1} \times \mathbf{R}_1/(\mathbf{R}_3 \times \mathbf{gm}_{Mc1} \times \mathbf{ro}_{Mc1}) \approx \mathbf{V}_{n1}$.

On the other hand, as described in the first working example of the seventh embodiment, in a case where the amplifier circuit A_1 and the resistor R_3 are directly connected, the input conversion noise V_{n1} of the amplifier circuit A_1 is applied to the node N_1 , the impedance of the input terminal T_1

viewed from the amplifier circuit A_1 becomes R_3 . Therefore, the noise component of V_{n1}/R_3 is superimposed on the current I_1 , and the noise component is converted into a voltage by the resistor R_1 . As a result, the noise voltage applied to the source terminal of the transistor M_1 (the node N_3) becomes $V_{n1}+V_{n1}\times R_1/R_3=V_{n1}$ (R_1+R_3)/ R_3 .

Thus, the noise voltage applied to the node N_3 can be reduced by disposing the transistor M_{c1} compared to the case where the amplifier circuit A_1 and the resistor R_3 are directly connected. Therefore, as described above, influence of the noise of the control circuit onto the output signal can be suppressed.

(Thirteenth Embodiment)

Next, a current amplifier circuit according to a thirteenth embodiment will be described with reference to FIGS. **47** and **48**. Here, FIG. **47** is a diagram illustrating the current amplifier circuit according to the thirteenth embodiment. As illustrated in FIG. **47**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , and a control circuit. The configurations of the above components are same as the first embodiment. In the present embodiment, the configuration of the passive element Z_1 is different from the first embodiment. In addition, a voltage-current conversion circuit Gm is connected to the passive element Z_1 .

The passive element Z_1 includes a resistor RZ_{11} (third resistor), a capacitor CZ_1 , and a resistor RZ_{12} (fourth resistor). One end of the resistor RZ_{11} is connected to one end of the resistor R_1 and the source terminal of the transistor M_1 at the node N_3 , and the other end is connected to one end of the 30 capacitor CZ_1 . One end of the resistor RZ_{12} is connected to one end of the transistor M_2 at the node N_4 , and the other end is connected to the other end of the capacitor CZ_1 . In other words, the resistor RZ_{11} , the capacitor CZ_1 , and the resistor RZ_{12} are connected 35 in series.

The voltage-current conversion circuit Gm includes two input terminals InP (first input terminal) and InM (second input terminal) and two output terminals OutP (first output terminal) and OutM (second output terminal). The voltage-current conversion circuit Gm converts voltages input from the input terminals InP and InM into currents by a predetermined voltage-current conversion coefficient Gm, and outputs the converted currents to the output terminals OutP and OutM, respectively.

The input terminal InP of the voltage-current conversion circuit Gm is connected to the other end of the resistor RZ_{11} , the output terminal OutP is connected to one end of the resistor RZ_{11} , the input terminal InM is connected to the other end of the resistor RZ_{12} , and the output terminal OutM is 50 connected to one end of the resistor RZ_{12} .

In the present embodiment, a voltage V_3 at the node N_3 becomes $V_3 = V_1 + R_1 I_1$, and a voltage V_4 at the node N_4 becomes $V_4 = V_2 + R_2 I_2$. Here, for example, in the case where $R_1 = R_2 = R_C$, $I_1 = I_{b1}(1 + \Delta_R)$, $I_2 = I_{b2}(1 - \Delta_R)$, and $V_1 = V_2 = V_C$, the 55 voltages V_3 and V_4 become: $V_3 = V_C + R_C I_{b1} + R_C I_{b1} \Delta_R$, and $V_4 = V_C + R_C I_{b2} - R_C I_{b2} \Delta_R$.

Therefore, a voltage applied to the passive element Z_1 becomes $V_3 - V_4 = R_C(I_{b_1} - I_{b_2}) + R_C(I_{b_1} + I_{b_2}) \Delta_R$. In other words, the signal components $R_C(I_{b_1} + I_{b_2}) \Delta_R$ and $R_C(I_{b_1} - I_{b_2})$ 60 are applied to the passive element Z_1 . $R_C(I_{b_1} - I_{b_2})$ is a direct current offset voltage generated by deviation in bias current I_{b_1} and I_{b_2} contained in the current I_1 and I_2 .

In the current amplifier circuit according to the present embodiment, since the passive element Z_1 is configured by the resistor RZ_{11} , the capacitor CZ_1 , and the resistor RZ_{12} connected in series, the direct current offset voltage is not

26

converted into the current. Therefore, according to the present embodiment, the power consumption of the current amplifier circuit can be reduced.

In addition, the direct current offset voltage applied to the capacitor CZ_1 can be converted into the current by the voltage-current conversion circuit Gm, and supplied to the transistors M_1 and M_2 . At this time, the current is desirably supplied such that a difference between the drain current I_{M1} of the transistor M_1 and the drain current I_{M2} of the transistor M_2 becomes small.

For example, when the voltage-current conversion coefficient is $Gm=\frac{1}{2}R_C$, the output current of the voltage-current conversion circuit Gm becomes $\pm(I_{b1}-I_{b2})/2$. When $-(I_{b1}-I_{b2})/2$ is supplied to the transistor M_1 , the bias current of the transistor M_1 becomes $I_{b1}-(I_{b1}-I_{b2})/2=(I_{b1}+I_{b2})/2$. In addition, when $+(I_{b1}-I_{b2})/2$ is supplied to the transistor M_2 , the bias current of the transistor M_2 becomes $I_{b2}+(I_{b1}-I_{b2})/2=(I_{b1}+I_{b2})/2$. In other words, the transistors M_1 and M_2 can be equalized in the bias current. Due to this, a direct current offset component contained in a difference between the current I_{M1} and the current I_{M2} respectively output from the output terminals I_3 and I_4 can be reduced.

Here, FIG. **48** is a diagram illustrating an example of the voltage-current conversion circuit Gm according to the present embodiment. As illustrated in FIG. **48**, the voltage-current conversion circuit Gm includes a differential input circuit D, current mirror circuits CM₁ and CM₂, and current sources I_{GB2} and I_{GB3} .

The differential input circuit D includes transistors M_{G1} and M_{G2} , resistors R_{G1} and R_{G2} , and a current source I_{GB1} . The transistor M_{G1} is an NMOS transistor, having a drain terminal connected to the current mirror circuit CM_1 , a gate terminal connected to one end of the resistor R_{G1} . The transistor M_{G2} is an NMOS transistor, having a drain terminal connected to the current mirror circuit CM_2 , a gate terminal connected to the current mirror circuit CM_2 , a gate terminal connected to the input terminal InM, and a source terminal connected to one end of the resistor R_{G2} . The resistors R_{G1} and R_{G2} both have other ends connected to a high voltage side of the current source I_{GB1} .

The current mirror circuit CM_1 is configured by transistors M_{G3} and M_{G6} , and copies the drain current I_{MG1} of the transistor M_{G1} . The transistors M_{G3} and M_{G6} are PMOS transistors, having the gate terminals connected to each other. The drain terminal of the transistor M_{G6} is connected to the output terminal OutP and a high voltage side of the current source I_{GB2} . Due to this, a difference between the drain current I_{MG1} and the current I_{GB2} supplied by the current source I_{GB2} , that is, the current corresponding to a change in voltage input from the input terminal InP is output from the output terminal OutP.

The current mirror circuit CM_2 is configured by transistors M_{G4} and M_{G5} , and copies the drain current I_{MG2} of the transistor M_{G2} . The transistors M_{G4} and M_{G5} are PMOS transistors, having the gate terminals connected to each other. The drain terminal of the transistor M_{G5} is connected to the output terminal OutM and a high voltage side of the current source I_{GB3} . Due to this, a difference between the drain current I_{MG2} and the current I_{GB3} supplied by the current source I_{GB3} , that is, the current corresponding to a change in voltage input from the input terminal InM is output from the output terminal OutM.

Here, by setting $R_{G1}=R_{G2}=R_C$, $I_{GB2}=I_{GB3}=I_{GB1}/2$, and by setting transconductances gm_{MG1} and gm_{MG2} of the transistors M_{G1} and M_{G2} to $1/gm_{MG1}<< R_C$ and $1/gm_{MG2}<< R_C$, the voltage-current conversion coefficient Gm in the differential input circuit can be set to $1/2R_C$.

(Fourteenth Embodiment)

Next, a current amplifier circuit according to a fourteenth embodiment will be described with reference to FIGS. **49** and **50**. Here, FIG. **49** is a diagram illustrating the current amplifier circuit according to the fourteenth embodiment. As illustrated in FIG. **49**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a control circuit, a passive element Z_1 , and the voltage-current conversion circuit Gm. The voltage-current conversion circuit Gm of the present embodiment is different from the thirteenth embodiment in the connection method.

27

In the present embodiment, the output terminal OutP (the first output terminal) is connected to the other end of the resistor R_1 and the control circuit at a node N_1 , and the output terminal OutM (the second output terminal) is connected to the other end of the resistor R_2 and the control circuit at a node N_2 . The configurations of other components are same as the thirteenth embodiment.

In the present embodiment, a voltage V_3 at a node N_3 20 becomes $V_3 = V_1 + R_1(I_1 - I_{Gm})$, and a voltage V_4 at a node N_4 becomes $V_4 = V_2 + R_2(I_2 + I_{Gm})$. Here, $-I_{Gm}$ and $+I_{Gm}$ are the output current from the output terminals OutP and OutM of the voltage-current conversion circuit Gm. For example, in the case where $R_1 = R_2 = R_C$, $I_1 = I_{b1}(1 + \Delta_R)$, $I_2 = I_{b2}(1 - \Delta_R)$, 25 $V_1 = V_2 = V_C$, the voltages V_3 and V_4 become: $V_3 = V_C + R_C I_{b1} - R_C I_{Gm} + R_C I_{b1} \Delta_R$, and $V_4 = V_C + R_C I_{Ib2} + R_C I_{Gm} - R_C I_{b2} \Delta_R$.

Therefore, a voltage applied to the passive element Z_1 becomes $V_3 - V_4 = R_C$ ($I_{b1} - I_{b2}$) $-2R_C I_{Gm} + R_C (I_{b1} + I_{b2}) \Delta_R$. In other words, the signal component $R_C (I_{b1} + I_{b2}) \Delta_R$, the direct 30 current offset voltage $R_C (I_{b1} - I_{b2})$, and a voltage $R_C I_{Gm}$ according to the output current of the voltage-current conversion circuit Gm are applied to the passive element Z_1 .

Since I_{Gm} is obtained by converting the direct current offset voltage into the current by the voltage-current conversion 35 coefficient Gm, a relation of I_{Gm} =Gm($R_C(I_{b_1}-I_{b_2})$ - $2R_CI_{Gm}$) is satisfied. In a case where Gm is sufficiently large and $2\text{GmR}_C>>1$, the current I_{Gm} becomes: $I_{Gm}\approx(I_{b_1}-I_{b_2})/2$, and the both bias currents flowing to the resistors R_1 and R_2 become equal to $(I_{b_1}+I_{b_2})/2$. Due to this, it is possible to 40 reduce the direct current offset component contained in a difference between the current I_{M1} and the current I_{M2} output from output terminals T_3 and T_4 respectively.

Here, FIG. **50** is a diagram illustrating an example of the voltage-current conversion circuit Gm according to the 45 present embodiment. As illustrated in FIG. **50**, the voltage-current conversion circuit Gm includes the differential input circuit D, the current mirror circuits CM_1 and CM_2 , and current sources I_{GB2} and I_{GB3} . The voltage-current conversion circuit Gm of FIG. **50** is different from the voltage-current conversion circuit Gm of FIG. **48** in the configuration of the differential input circuit D.

The differential input circuit D includes transistors M_{G1} and M_{G2} and a current source I_{GB1} . The transistor M_{G1} is an NMOS transistor, having a drain terminal connected to the current mirror circuit CM_1 , a gate terminal connected to an input terminal InP, and a source terminal connected to a high voltage side of the current source I_{GB1} . The transistor M_{G2} is an NMOS transistor, having a drain terminal connected to the current mirror circuit CM_2 , a gate terminal connected to an input terminal InM, and a source terminal connected to a high voltage side of the current source I_{GB2} . In other words, the voltage-current conversion circuit Gm of FIG. **50** is different from the voltage-current conversion circuit Gm of FIG. **48**, and does not include the resistors R_{G1} and R_{G2} .

Therefore, in the voltage-current conversion circuit Gm of FIG. 50, a change of the output current with respect to the

28

change of the input voltage is large compared to the voltagecurrent conversion circuit Gm of FIG. 48. In other words, the voltage-current conversion coefficient Gm is large. This is because, unlike the case of the thirteenth embodiment, the voltage-current conversion coefficient Gm is desirably large in the case of the present embodiment. (Fifteenth Embodiment)

Next, a current amplifier circuit according to a fifteenth embodiment will be described with reference to FIGS. **51** to **53**. Here, FIG. **51** is a diagram illustrating the current amplifier circuit according to the fifteenth embodiment. As illustrated in FIG. **51**, the current amplifier circuit according to the present embodiment includes a transistor M_1 , a resistor R_1 , a transistor M_2 , a resistor R_2 , a control circuit, the passive element Z_1 , and a current-voltage conversion circuit. The configurations of the above components are same as the tenth embodiment. In the present embodiment, the current amplifier circuit further includes a comparison circuit and a current mirror circuit CM_3 .

The comparison circuit compares the output voltages from output terminals T_3 and T_4 with a predetermined voltage (fourth predetermined voltage), and outputs the current according to the comparison result. The comparison circuit includes transistors M_{B1} , M_{B2} , M_{B3} , and M_{B4} , a resistor R_{B1} , and current sources I_{B1} and I_{B2} .

The transistor $M_{\mathcal{B}1}$ is a PMOS transistor, having a source terminal connected to one end of the resistor $R_{\mathcal{B}1}$ and a low voltage side of the current source $I_{\mathcal{B}1}$, a gate terminal from which a predetermined bias voltage $V_{\mathcal{C}3}$ is applied, and a drain terminal connected to the drain terminal of the transistor $M_{\mathcal{B}4}$. A bias voltage $V_{\mathcal{C}3}$ is set to be lower than the bias voltage of the output voltages from the output terminals T_3 and T_4 .

The transistor M_{B2} is a PMOS transistor, having a source terminal connected to the other end of the resistor R_{B1} , the source terminal of the transistor M_{B3} , and a low voltage side of the current source I_{B2} , a gate terminal connected to the output terminal T_4 , and a drain terminal connected to the drain terminal of the transistor M_{B3} and the current mirror circuit CM_3 .

The transistor M_{B3} is a PMOS transistor, having a source terminal connected to the other end of the resistor R_{B1} , the source terminal of the transistor M_{B2} , and the low voltage side of the current source I_{B2} , a gate terminal connected to the output terminal T_3 , a drain terminal connected to the drain terminal of the transistor M_{B2} and the current mirror circuit CM_3 .

The transistor $M_{\mathcal{B}4}$ is an NMOS transistor, having a source terminal grounded, a drain terminal connected to the drain terminal of the transistor $M_{\mathcal{B}1}$, and a gate terminal connected to the drain terminal.

The current mirror circuit CM_3 includes transistors M_{B5} , M_{B6} , and M_{B7} . The transistors M_{B5} , M_{B6} , and M_{B7} are NMOS transistors, each of which the gate terminal is connected to each other and the source terminal is grounded. In addition, the drain terminal of the transistor M_{B5} is connected to the drain terminals of the transistors M_{B2} and M_{B3} , and the drain terminals of the transistors M_{B6} and M_{B7} are respectively connected to nodes N_4 and N_3 .

Next, the operation of the current amplifier circuit according to the present embodiment will be described. In the following, the signal current is differentially received from input terminals T_1 and T_2 .

First, the current-voltage conversion circuit converts the drain current I_{M1} and the drain current I_{M2} of the transistors M_1 and M_2 into voltages. The voltages converted by the current-voltage conversion circuit are output from the output terminals T_3 and T_4 , and input to the comparison circuit.

Next, the comparison circuit compares the output voltages (the gate voltages of the transistors M_{B3} and M_{B2}) of the output terminals T_3 and T_4 with a predetermined voltage. In a case where the signal components contained in the output voltages are sufficiently small, that is, the output voltages are sufficiently higher than the predetermined voltage, all the current I_{B2} of the current source I_{B2} flows to the resistor R_{B1} , the transistors M_{B3} and M_{B2} are turned off, and the current does not flow to the current mirror circuit CM_3 .

On the other hand, in a case where the signal components contained in the output voltages are small and the output voltages are higher than the predetermined voltage but a difference between the voltage at the other end of the resistor R_{B1} and the voltage at one end of the resistor R_{B1} is smaller than $R_{B1}I_{B2}$, a part of current of the current I_{B2} of the current source I_{B2} starts to flow to the transistors M_{B2} and M_{B3} , and flows to the current mirror circuit CM₃. When the output voltages are further lowered and become smaller than the predetermined voltage, all the current I_{B2} of the current 20source I_{B2} and a part of the current I_{B1} of the current source I_{B1} start to flow to the transistors M_{B2} and M_{B3} , and flow to the current mirror circuit CM3. Thus, the current flowing to the current mirror circuit CM3 is increased as the output voltages become small, that is, the signal components contained in the 25 output voltages become large.

Since the output voltages are differentially input to the transistors M_{B2} and M_{B3} , in a case where the signal components contained in the output voltages are sufficiently larger, one of the transistor M_{B2} or the transistor M_{B3} is turned on and 30 the other one is turned off. Then, the drain current of the turned-on transistor is supplied to the transistor M_{B5} .

The current output by the comparison circuit becomes the drain current I_{MB5} of the transistor M_{B5} . The drain current I_{MB5} is copied by the transistors M_{B7} and M_{B6} , and supplied 35 from nodes N_3 and N_4 to the transistors M_1 and M_2 .

With this configuration, in a case where the signal current contained in the current I_1 and I_2 is larger, the current amplifier circuit according to the present embodiment supplies the current to the transistors M_1 and M_2 , and drive performance 40 can be improved. Therefore, an amplification factor of the signal component can be improved.

As described in the first embodiment, the drain current I_{M1} of the transistor M_1 is $I_{M1} = I_1 + I_{Z1} = I_b + \Delta_R I_b + 2R_C I_b \Delta_R / Z_1$, the drain current I_{M2} flowing to the transistor M_2 is $I_{M2} = I_2 - 45$ $I_{Z1} = I_b - \Delta_R I_b - 2R_C I_b \Delta_R / Z_1$. Therefore, in the current amplifier circuit of the first embodiment, the signal current contained in the output current from the output terminals T_3 and T_4 is not possible to become larger than the bias current I_b .

However, according to the present embodiment, since the 50 current can be supplied to the transistors M_1 and M_2 through the current mirror circuit CM_3 , it is possible to make the signal current contained in the output current larger than the bias current I_b .

In addition, the output current from the comparison circuit 55 is smoothly changed by connecting the resistor R_{B1} between the transistor M_{B1} and the transistors M_{B2} and M_{B3} , and the deformation of the output current from the comparison circuit can be suppressed.

FIG. **52** is a diagram illustrating another example of the current amplifier circuit according to the present embodiment. In FIG. **52**, the drain terminal of the transistor M_{B2} of the comparison circuit and the drain terminal of the transistor M_{B3} are not connected, and they are connected to the current mirror circuit CM_3 , respectively. The current mirror circuit CM_3 includes a first current mirror circuit CM_{31} and a second current mirror circuit CM_{32} .

30

The first current mirror circuit CM_{31} includes the transistor M_{B5} and the transistor M_{B6} . The transistor M_{B5} has a drain terminal connected to a gate terminal and the drain terminal of the transistor M_{B2} , the gate terminal connected to the gate terminal of the transistor M_{B6} , and a source terminal grounded. The transistor M_{B6} has a drain terminal connected to a node N_4 , a gate terminal connected to the gate terminal of the transistor M_{B5} , and a source terminal grounded. A first current mirror circuit CM_{31} copies the drain current I_{MB2} of the transistor M_{B2} and supplies the current from the node N_4 to the transistor M_2 .

The second current mirror circuit CM_{32} includes a transistor M_{B7} and a transistor M_{B8} . The transistor M_{B8} has a drain terminal connected to a gate terminal and the drain terminal of the transistor M_{B3} , the gate terminal connected to the gate terminal of the transistor M_{B7} , and a source terminal grounded. The transistor M_{B7} has a drain terminal connected to a node N_3 , a gate terminal connected to the gate terminal of the transistor M_{B8} , and a source terminal grounded. A second current mirror circuit CM_{32} copies the drain current I_{MB3} of the transistor M_{B3} and supplies the current from the node N_3 to the transistor M_1 .

The configurations of other components are same as the current amplifier circuit of FIG. 51. With this configuration, it is possible to supply the current only to the transistor M_1 or the transistor M_2 outputting the lower voltage in the output voltages from the output terminals T_3 and T_4 .

FIG. **53** is a diagram illustrating another example of the current amplifier circuit according to the present embodiment. In FIG. **53**, the comparison circuit further includes a resistor R_{B2} and a current source I_{B3} . The transistor M_{B2} has a source terminal connected to one end of the resistor R_{B1} and a lower voltage side of the current source I_{B2} , a gate terminal connected to the output terminal T_4 , and a drain terminal connected to the current mirror circuit CM_{31} . The transistor M_{B3} has a source terminal connected to one end of the resistor R_{B2} and a lower voltage side of the current source I_{B3} , a gate terminal connected to the output terminal T_3 , and a drain terminal connected to the current mirror circuit CM_{32} . The configurations of other components are same as FIG. **52**.

With this configuration, it is possible to supply the current only to the transistor M_1 or the transistor M_2 outputting the lower voltage in the output voltages from the output terminals T_3 and T_4 . In addition, it is possible to separately set a voltage to be used for comparison with the output voltage from the output terminal T_3 and a voltage to be used for comparison with the output voltage from the output terminal T_4 . Furthermore, it is possible to separately set current to be supplied from the node N_3 and current to be supplied from the node N_4 .

While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions

The invention claimed is:

- 1. A current amplifier circuit, comprising:
- a first transistor having a first terminal, a second terminal, and a control terminal;
- a first resistor having one end connected to the first terminal of the first transistor;

- a second transistor having a first terminal, a second terminal, and a control terminal;
- a second resistor having one end connected to the first terminal of the second transistor;
- a first passive element connected between the first terminal of the first transistor and the first terminal of the second transistor; and
- a control circuit to control at least one of voltage at the control terminal of the first transistor and voltage at the control terminal of the second transistor such that voltage at an other end of the first resistor becomes equal to a first predetermined voltage and voltage at an other end of the second resistor becomes equal to a second predetermined voltage.
- 2. The circuit according to claim 1, wherein the first predetermined voltage is equal to the second predetermined voltage.
 - 3. The circuit according to claim 1, further comprising:
 - a third transistor having a first terminal, a second terminal, and a control terminal connected to the control terminal 20 of the first transistor;
 - a fourth transistor having a first terminal, a second terminal, and a control terminal connected to the control terminal of the second transistor; and
 - a second passive element connected between the first terminal of the third transistor and the first terminal of the fourth transistor,

wherein

- the second terminal of the third transistor is connected to the second terminal of the first transistor, and
- the second terminal of the fourth transistor is connected to the second terminal of the second transistor.
- 4. The circuit according to claim 1, further comprising:
- a third transistor having a first terminal, a second terminal, and a control terminal connected to the first terminal of 35 the first transistor;
- a fourth transistor having a first terminal, a second terminal, and a control terminal connected to the first terminal of the second transistor; and
- a second passive element connected between the first terminal of the third transistor and the first terminal of the fourth transistor.

wherein

- the second terminal of the third transistor is connected to the second terminal of the first transistor, and
- the second terminal of the fourth transistor is connected to the second terminal of the second transistor.
- 5. The circuit according to claim 1, comprising a switching circuit to switch a path such that current flowing in the first transistor and current flowing in the second transistor alternately is switched.
- **6.** The circuit according to claim **5**, the switching circuit comprising:
 - a first switch to switch the path between a path of current output from the second terminal of the first transistor and 55 a path of current output from the second terminal of the second transistor; and
 - a second switch to switch the path between a path of current received from the other end of the first resistor and a path of current received from the other end of the second 60 resistor.
- 7. The circuit according to claim 5, the switching circuit comprising:
 - a first switch to switch the path between a path of current output from the second terminal of the first transistor and a path of current output from the second terminal of the second transistor;

32

- a third switch to switch the path between a path of current output from the one end of the first resistor and a path of current output from the one end of the second resistor;
- a fourth switch to switch a path of voltage received in the control circuit in order to control voltage at a gate terminal of the first transistor; and
- a fifth switch to switch a path of voltage received in the control circuit in order to control voltage at a gate terminal of the second transistor.
- **8**. The circuit according to claim **1**, further comprising:
- a fifth transistor having a first terminal connected to a first input terminal, a second terminal connected to the other end of the first resistor, and a control terminal applied with a third predetermined voltage, and
- a sixth transistor having a first terminal connected to a second input terminal, a second terminal connected to the other end of the second resistor, and a control terminal applied with the third predetermined voltage.
- 9. The circuit according to claim 1, wherein the first passive element includes
- a third resistor having one end connected to the first terminal of the first transistor,
- a fourth resistor having one end connected to the first terminal of the second transistor, and
- a capacitor connected between an other end of the third resistor and an other end of the fourth resistor,

the circuit further comprising:

- a voltage-current conversion circuit having a first output terminal connected to the one end of the third resistor, a first input terminal connected to the other end of the third resistor, a second output terminal connected to the one end of the fourth resistor, and a second input terminal connected to the other end of the fourth resistor.
- 10. The circuit according to claim 1, wherein the first passive element includes
- a third resistor having one end connected to the first terminal of the first transistor.
- a fourth resistor having one end connected to the first terminal of the second transistor, and
- a capacitor connected between an other end of the third resistor and an other end of the fourth resistor,

the circuit further comprising:

45

- a voltage-current conversion circuit having a first output terminal connected to the other end of the first resistor, a first input terminal connected to the other end of the third resistor, a second output terminal connected to the other end of the second resistor, and a second input terminal connected to the other end of the fourth resistor.
- 11. The circuit according to claim 1, further comprising:
- a current-voltage conversion circuit to convert drain current of the first transistor and the second transistor into voltage;
- a comparison circuit to compare the voltage converted by the current-voltage conversion circuit with a fourth predetermined voltage; and
- a current mirror circuit to supply current according to a comparison result of the comparison circuit to at least one of the first transistor and the second transistor.
- 12. The circuit according to claim 1, wherein impedance of the first passive element is variable.
- 13. The circuit according to claim 1, wherein the control terminal is a gate terminal or a base terminal, the first terminal is a source terminal or an emitter terminal, and the second terminal is a drain terminal or a collector terminal.

- 14. An integrator, comprising:
- a current amplifier circuit according to claim 1; and
- a capacitor element to integrate an output signal of the current amplifier circuit.
- **15**. The integrator according to claim **14**, wherein the capacitor element is formed including capacitor connected between the second terminal of the first transistor and the second terminal of the second transistor.
- 16. The integrator according to claim 14, wherein the capacitor element is formed including a first capacitor connected to the second terminal of the first transistor, and a second capacitor connected to the second terminal of the second transistor.
 - 17. An AD converter, comprising:
 - a current amplifier circuit according to claim 1;
 - a current-voltage conversion circuit to convert an output signal of the current amplifier circuit to a voltage signal; and
 - an AD conversion circuit to convert the voltage signal to a digital signal.
 - 18. A current amplifier circuit, comprising:
 - a first transistor having a first terminal, a second terminal, and a control terminal:
 - a first resistor having one end connected to the first terminal of the first transistor;

34

- a first passive element connected between the first terminal of the first transistor and reference potential;
- a control circuit to control voltage at the control terminal of the first transistor such that the other end of the first resistor becomes a first predetermined voltage:
- a second transistor having a first terminal connected to an input terminal, and
- a second terminal connected to an other end of the first resistor, and a control terminal applied with a second predetermined voltage.
- 19. A current amplifier circuit, comprising:
- a first transistor having a first terminal, a second terminal, and a control terminal;
- a first resistor having one end connected to the first terminal of the first transistor;
- a first passive element connected between the first terminal of the first transistor and reference potential; and
- a control circuit to control voltage at the control terminal of the first transistor such that the other end of the first resistor becomes a first predetermined voltage, wherein the first passive element is formed including at least a capacitor.

* * * * *